由于温差的存在而导致的能量转化过程中所转化的能量;而该转化过程称为热交换或热传递;热量的公制为焦耳。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。从分子运动论观点看,温度是物体分子运动平均动能的标志。温度是大量分子热运动的集体表现,含有统计意义。热量和温度的区别是什么?
热量= 质量*比热容*温度的变化
Q=CM(t2-t1)
Q----热量
M----物体的比热(查表)
t2---物体最后温度
t1---物体初始温度
拓展资料:
热量:
热量是指由于温度差别而转移的能量;也是指1公克的水在1大气压下温度上升1度c所产生的能量;在温度不同的物体之间,热量总是由高温物体向低温物体传递;即使在等温过程中,物体之间的温度也不断出现微小差别,通过热量传递不断达到新的平衡。
人体的一切生命活动都需要能量,如物质代谢的合成反应、肌肉收缩、腺体分泌等等。而这些能量主要来源于食物。动、植物性食物中所含的营养素可分为五大类:碳水化合物、脂类、蛋白质、矿物质和维生素,加上水则为六大类。
其中,碳水化合物、脂肪和蛋白质经体内氧化可释放能量。三者统称为“产能营养素”或“热源质”。由于温差的存在而导致的能量转化过程中所转化的能量;而该转化过程称为热交换或热传递;热量的公制为焦耳。
温度:
温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。根据某个可观察现象(如水银柱的膨胀),按照几种任意标度之一所测得的冷热程度。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。
国际单位为热力学温标(K)。目前国际上用得较多的其他温标有华氏温标(°F)、摄氏温标(°C)和国际实用温标。从分子运动论观点看,温度是物体分子运动平均动能的标志。温度是大量分子热运动的集体表现,含有统计意义。
1温度高的物体内能一定大,内能有两大部分分子的动能、分子间的相互作用势能,这个题只说了前者,没有考虑后者。还要考虑物质的量。 2物体温度升高,不一定是吸收了热量,对物体做功(如敲打,摩擦),也可以使其温度上升 3物体吸收了热量,温度不一定升高,水沸腾,还是100度, 1. 区别(1)温度是表示物体冷热程度的物理量。从宏观上讲,温度是对物体冷热的感觉。从微观的分子动理论的观点看,温度是物体分子平均动能的标志,含统计意义。温度是表示某一时刻物体所处状态的状态量。对温度只能说“是多少”、“升高多少”、“降低多少”。(2)内能是物体内部所有分子做无规则运动的动能和分子势能的总和。物体温度变化时,内部分子运动的速度大小也发生变化,所以分子的动能发生变化,内能也会变化。另外,物体状态、体积变化时,分子间的相互作用强弱也会改变,分子势能发生变化,从而使物体的内能变化。物体的温度、状态一定时,质量越大,则内部分子数目越多,分子动能和势能的总和也越大,即物体的内能越大。内能也是状态量。对内能只能说“有”、“大”、“小”、“增大”、“减小”。(3)热量是指热传递过程中内能的改变量。热量是过程量,它总是伴随着热传递的过程。热量是热传递过程中内能变化的量度,与物体的质量、比热容、温度变化量有关。对热量只能说“吸收多少”、“放出多少”,说一个物体含有多少热量是错误的。2. 联系(1)温度与内能的关系①物体温度的变化一定会引起内能的变化。物体温度升高,物体内分子做无规则运动的速度增大,分子的动能增大,因此内能也增大。反之,温度降低,内能减小。②物体内能的变化不一定引起温度的变化。例如:冰熔化过程中,吸收热量,内能增大,但温度不变;水沸腾过程中,吸收了热量,内能发生了变化,但温度保持不变。(2)内能与热量的关系①物体的内能变化,不一定是吸收或放出了热量。不仅热传递可以改变物体的内能,做功也可以改变物体的内能。例如:找一根铁丝,不断弯折,过一段时间,弯折处温度升高。这是通过做功来改变物体内能,而不是铁丝吸收了热量。②在不做功的情况下,物体吸收或放出热量,一定会引起内能的变化。物体吸热,内能增大;物体放热,内能减小。(3)热量与温度的关系①物体吸收或放出热量,不一定引起温度的变化。例如:冰熔化的过程和液化沸腾的过程,物体吸收了热量,但温度保持不变。②物体温度改变,不一定是吸收或放出了热量。物体内能的变化,可能是热传递引起的,也可能是做功引起的,所以物体温度改变,并不一定表明物体吸收或放出了热量。
关于温度和热量的关系,可以从两个方面来理解:一方面,物体吸收或放出热量,但温度不一定改变。例如晶体熔化和液体沸腾,物体吸热,但不升温;液体凝固成晶体和气体液化,物体放热,但不降温。
另一方面,物体温度发生变化,不一定是由于吸热或放热。因为做功和热传递在改变物体的内能上是等效的。
热量和温度的关系,可以用一个比较形象的例子来形容——水量和水位。 在一个柱体容器里,水量越多,水位越高,如果再容器的中间部位开一个口子,水量会减少,水会留到比这个口子低的地方,但水位一旦到达口子处,下面的水不会再向外流。
再说热量和温度,对于同一种物质,质量体积不变的情况下,热量和温度有个比例关系,吸收热像越多,温度越高。如果有一个温度低的物体与之接触,那么热量便会转移到低温物体,当温度降到与之接触的物体温度一样时,热量便停止传递。
要想把热量继续传出来,要找一个比他温度更加低的物体与之接触,就像那个口子要开的低一些一样。
扩展资料:
热与内能的关系:
热量与内能之间的关系就好比是做功与机械能之间的关系一样。热量是物体内能改变的一种量度。若两区域之间尚未达至热平衡,那么热便在它们中间温度高的地方向温度低的另一方传递。任何物质都有一定数量的内能,这和组成物质的原子、分子的无序运动有关。
当两不同温度的物质处于热接触时,它们便交换内能,直至双方温度一致,也就是达致热平衡。这里,所传递的能量数便等同于所交换的热量数。
许多人把热量跟内能弄混,其实热量指的是内能的变化、系统的做功。热量描述内能的变化量,而内能是状态量,是系统的态函数,对应系统的一个状态点。
充分了解热量与内能的区别是明白热力学第一定律的关键。热传递过程中物体之间传递的热量与过程(绝热,等温,等压)相联系,即吸热或放热必在某一过程中进行。物体处于某一状态时不能说它含有多少热量(热量是过程量,变化量)。
一、区别:
温度表示物体的冷热程度,它是一个状态量,所以只能说“物体的温度是多少”.两个不同状态间可以比较温度的高低.温度是不能“传递”和“转移”的,其单位是“摄氏度”.从分子动理论的观点来看,它跟物体内部分子的无规则运动情况有关,温度越高,分子无规则运动的平均速度就越大,分子运动就越剧烈.可以说,温度是分子无规则运动的剧烈程度的标志,它是大量分子无规则运动的集中体现,对于个别分子毫无意义.
内能是能量的一种形式,它是物体内部所有分子无规则运动的动能与势能的总和.内能和温度一样,也是一个状态量,通常用“具有”等词来修饰. 内能大小与物体的质量、体积、温度及构成物体的物质种类都有关系.现阶段主要掌握与温度的关系.一个物体温度升高时,它的内能增大,温度降低时,内能减小.切记“温度不变时,它的内能一定不变”是错误的.如晶体熔化、液体沸腾时,温度保持不变,但要吸热,内能增加.温度不变时,它的内能也可能减小(想一想为什么?).同样,物体放出热量时,温度也不一定降低.
热量是在热传递过程中,传递能量的多少.它反映了热传递过程中,内能转移的数量,是内能转移多少的量度,是一个过程量,要用“吸收”或“放出”来表述而不能用“具有”或“含有”.热量的单位是“焦耳”.
二、联系:
(1)温度与内能
因为温度越高,物体内的分子做无规则运动的速度越快,分子的平均动能越大,因此物体的内能越多.但要注意:温度不是内能变化的惟一标志.物体的状态变化也是内能变化的标志(如晶体的熔化、凝固,液体沸腾等).
(2)温度与热量
温度反映的是分子无规则运动的剧烈程度.分子运动越剧烈,物体温度就越高.热量是在热传递过程中,内能转移的多少.温度高的物体放出热量,内能减小,温度低的物体吸收热量,内能增加.两物体间不存在温度差时,物体具有温度,但没有热传递,也就谈不上“热量”.
(3)热量与内能
热量反映了热传递过程中,内能转移的数量.物体放出了多少热量,内能就减小多少;物体吸收了多少热量,内能就增加多少.要注意:内能增减并不只与吸收或放出热量有关,做功也可以改变物体内能.对物体做功,物体的内能会增加,对物体做了多少功,物体的内能会增加多少;物体对外做功,物体的内能会减小,对外做功多少,物体的内能会减小多少.
(4)内能与机械能
内能是物体内部所有分子无规则运动的动能与势能的总和.机械能是指整个物体发生机械运动时具有的能量.一个物体可以同时具有内能和机械能.因为一切物质的分子都在不停的做无规则运动,总有分子动能;分子间总是存在着引力和斥力,总有分子势能,所以一切物体在任何情况下都具有内能,即内能不可能为零.机械能可以为零.
一、概念不同
1、温度:温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。
2、热量:热量是指当系统状态的改变来源于热学平衡条件的破坏,也即来源于系统与外界间存在温度差时,我们就称系统与外界间存在热学相互作用。
二、表示单位不同
1、温度:有华氏温标(°F)、摄氏温标(°C)和国际实用温标。
2、热量:热量的单位时“大卡”。营养学中用“千卡”做热量的单位。
三、作用不同
1、温度:从分子运动论观点看,温度是物体分子运动平均动能的标志。温度是大量分子热运动的集体表现,有统计作用。
2、热量:热量是物体内能改变的一种量度。
参考资料来源:百度百科-温度 (物理量)
参考资料来源:百度百科-热量
温度1)定义:温度是表示物体的冷热程度的物理量。2)实质:温度是物体内部大量分子无规则剧烈程度的反映。温度越高,物体内部分子运动得越激烈。它是一个状态量。若两物体的温度相同,则它们的冷热程度相同。热量1)定义:热量是在热传递过程中传递的能量叫热量。2)实质:它是热传递过程中,物体内能的改变量。它是一个过程量,它诞生在热传递过程中,离开热传递谈热量是毫无意义的。内能1)定义:物体内部所有分子作无规则运动的动能和分子势能的总和。2)实质:它是物体内部所含有的能量,它是无条件的,任何物体都具有内能。它是一个状态量。从微观说,它的大小与分子运动的快慢、分子间距离、分子个数都有关系;从宏观说,它的大小与物体的温度、物体的体积、物体质量有关系。改变物体内能的方式有做功和热传递两种方式。三者的关系温度与热量的关系1)物体吸收热量,物体的温度不一定升高。例如:晶体在熔化、汽化等物态变化过程,就是物体只吸收热量,但其温度保持不变。吸收的能量只用来改变物体内部的分子间的势能,分子的平均动能并未改变。2)物体温度升高,物体不一定吸收热量。例如:摩擦生热现象中,物体的温度升高是通过做功的方式实现的,并没有发生热传递。热量与内能的关系1)物体吸收热量,物体的内能增大。物体吸收热量或是使物体升高温度(增大分子的平均动能),或是改变物体的微观结构(增大分子间的势能)。例如:加热水的时候,水在沸腾之前,随着吸热,水温在升高,水的内能在增加;水在沸腾时,水仍然在吸热,其温度虽然保持不变,但有一部分水变成了水蒸气,其分子势能增大,其内能增大。2)物体内能增加,物体不一定吸热。因为改变内能的方式有两种——做功和热传递。例如:用锯条锯木材时,锯条和木材发热,引起内能的增加。温度与内能的关系1)物体温度升高,内能增大。物体温度升高,分子的热运动加剧,大量分子的平均动能增大,导致物体的内能增大。2)物体内能增大,其温度不一定升高。因为物体的内能不仅与温度有关,还与体积、质量有关。温度、热量、内能的关系1)物体温度升高,内能增加,但不一定是吸收了热量。2)物体吸收热量,内能增加,但温度不一定升高。
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-mail:langhai8@163.com
本文链接:https://www.wumai.net/tianqi/20230102095511.html