压力对应饱和温度是指液体和蒸气处于动态平衡状态,即饱和状态时所具有的温度ts。饱和温度一定时,饱和压力也一定;反之,饱和压力一定时,饱和温度也一定。气压大小与高度、温度等条件有关。表示气压的单位,习惯上常用水银柱高度。当物体被举起且压在天花板上时,重力削弱压力的作用。温度为0℃和压强为101.325kPa。参考资料来源:百度百科-标准状况蒸汽1-8公斤压力下对应的温度是多少?一般气体受热膨胀,在体积有限的情况下,气体对容器壁的压强增大,由于受力面积不变,压力也会增大;温度降低时相反。用初始压力除以初始温度就算出了系数,再用这个系数算每摄氏度对应的压力变化。
压力对应饱和温度是指液体和蒸气处于动态平衡状态,即饱和状态时所具有的温度ts。
饱和状态时,液体和蒸气的温度相等。饱和温度一定时,饱和压力也一定;反之,饱和压力一定时,饱和温度也一定。
气体受热膨胀,在体积有限的情况下,气体对容器壁的压强增大,由于受力面积不变,压力也会增大;温度降低时相反。从分子运动论观点看,温度是物体分子运动平均动能的标志。温度是大量分子热运动的集体表现,含有统计意义。
温度和气压的关系
用瓶子装气体,温度高,气压就高,温度低,气压低
因为瓶子是封闭的。
但在大气中,温度高,气压低,温度低,气压高
因为大气是不封闭的
温度与大气压高低变化
在开放的环境下,温度越高气压越低。
在密闭环境下(体积不变),温度越高气压越高。
气压大小与高度、温度等条件有关。一般随高度增大而减小。在水平方向上,大气压的差异引起空气的流动。表示气压的单位,习惯上常用水银柱高度。
例如,一个标准大气压等于760毫米高的水银柱的重量,它相当于一平方厘米面积上承受1.0336公斤重的大气压力。国际上统一规定用"百帕"作为气压单位。经过换算: 一个标准大气压=1013百帕(毫巴)。
气体受热膨胀,在体积有限的情况下,气体对容器壁的压强增大,由于受力面积不变,压力也会增大;温度降低时相反。
用理想气体方程:pV=nRT,即p=nRT/V,此题为等容过程,体积不变.如要计算压力改变值,需要知道第二个公式中T的系数,楼主的初始条件还应该有初始温度吧!用初始压力除以初始温度就算出了系数,再用这个系数算每摄氏度对应的压力变化。
从分子运动论观点看,温度是物体分子运动平均动能的标志。温度是大量分子热运动的集体表现,含有统计意义。对于个别分子来说,温度是没有意义的。根据某个可观察现象(如水银柱的膨胀),按照几种任意标度之一所测得的冷热程度。
扩展资料:
温度高到一定程度把空气中的氧气物质燃烧化为火焰传递热可导致物质融化融解高到极致便毁灭物质(质量)能量一切;温度低到一定程度便可以与水或空气或身体(血液)中的水分凝固成冰传递冷,冰冻可导致物质碎裂,冷到极致可碎裂物质质量能量一切危及生命的都可以改变物体的移动(运动)速度。
压力的方向没有固定的指向,但始终和受力物体的接触面相垂直。(因为接触面可能是水平的,也可能是竖直或倾斜的)重力有固定的指向,总是竖直向下。
压力可以由重力产生也可以与重力无关。当物体放在水平面上且无其他外力作用时,压力与重力大小相等。当物体放在斜面上时,压力小于重力。当物体被压在竖直面上时,压力与重力完全无关。当物体被举起且压在天花板上时,重力削弱压力的作用。
参考资料来源:百度百科——压力
参考资料来源:百度百科——温度
温度为0℃(273.15K)和压强为101.325kPa(1标准大气压,760mmHg)。
此状态即物理学与化学的理想状态之一标准状况。由于地表各处的温度、压强皆不同,即使是同一地点的温度压强也随测量时间不同而相异,因此为研究方便,制定出描述物质特征的标准状况:0 ℃(273.15 K)、101kPa。
这样的定义接近海平面上水的冰点。1摩尔的理想气体在STP下占有的体积为22.413996(39)L(CODATA 2002),为标准摩尔体积(standard molar volume)。这是区别一般条件而制定的标准。
扩展资料:
标准实验条件:
由于标准温度和压力的许多定义与标准实验室温度(例如,0°C至〜25°C)的温度差异很大,所以经常参考“标准实验室条件”(有意选择为与术语“温度和压力的标准条件”不同,尽管在字面上解释时其语义近似身份)。
然而,考虑到世界不同地区的气候,高度以及工作场所热/冷的使用程度不同,实验室的“标准”温度和压力是不可避免的地理位置。例如,澳大利亚新南威尔士州的学校在100 kPa时使用25°C进行标准实验室条件。
ASTM国际公司已发布了关于调节的标准ASTM E41-术语和特定材料和测试方法的数百种特殊条件。其他标准组织也有专门的标准测试条件。
参考资料来源:百度百科-标准状况
蒸汽1-8公斤压力下对应的温度是100摄氏度至2711摄氏度。
例如前提条件是一定质量的蒸汽1公斤压力在V体积里是100℃,体积V不变。
根据理想气体公式,质量一定,物质确定,方程可以简化为:
PV÷T=K
1×V÷(273+100)=K
8×V÷(273+x)=K=1×V÷(273+100)
8÷(273+x)=1÷373
273+x=8×373=2984
x=2984-273
x=2711(摄氏度)
扩展资料:
描述理想气体在处于平衡态时,压强、体积、物质的量、温度间关系的状态方程。它建立在玻义耳-马略特定律、查理定律、盖-吕萨克定律等经验定律上。
其方程为pV = nRT。这个方程有4个变量:p是指理想气体的压强,V为理想气体的体积,n表示气体物质的量,而T则表示理想气体的热力学温度;还有一个常量:R为理想气体常数。可以看出,此方程的变量很多。因此此方程以其变量多、适用范围广而著称,对常温常压下的空气也近似地适用。
值得注意的是,把理想气体方程和克拉伯龙方程等效是不正确的。一般克拉伯龙方程是指描述相平衡的方程dp/dT=L/(TΔv)。尽管理想气体定律是由克拉伯龙发现,但是国际上不把理想气体状态方程叫克拉伯龙方程。
理想气体状态方程PV=nRT;描述理想气体状态变化规律的方程。由克拉伯龙于将玻意耳定律和盖-吕萨克定律合并起来。将理想气体状态方程和克拉伯龙方程画等号,这是不正确的。尽管理想气体状态方程是由克拉伯龙提出的,但是克拉伯龙方程所描述的是相平衡的物理量。
摩尔表示的状态方程中,R为比例常数,对任意理想气体而言,R是一定的,约为8.31441±0.00026J/(mol·K)。
如果采用质量表示状态方程,pV=mrT,此时r是和气体种类有关系的,r=R/M,M为此气体的平均摩尔质量。
用密度表示该关系:pM=ρRT(M为摩尔质量,ρ为密度)。
理想气体状态方程是由研究低压下气体的行为导出的。但各气体在适用理想气体状态方程时多少有些偏差;压力越低,偏差越小,在极低压力下理想气体状态方程可较准确地描述气体的行为。
极低的压强意味着分子之间的距离非常大,此时分子之间的相互作用非常小;又意味着分子本身所占的体积与此时气体所具有的非常大的体积相比可忽略不计,因而分子可近似被看作是没有体积的质点。于是从极低压力气体的行为触发,抽象提出理想气体的概念。
理想气体在微观上具有分子之间无互相作用力和分子本身不占有体积的特征。
参考资料来源:百度百科-理想气体方程
一般气体受热膨胀,在体积有限的情况下,气体对容器壁的压强增大,由于受力面积不变,压力也会增大;温度降低时相反。
用理想气体方程:pV=nRT,即p=nRT/V,此题为等容过程,体积不变.如要计算压力改变值,需要知道第二个公式中T的系数,楼主的初始条件还应该有初始温度吧!用初始压力除以初始温度就算出了系数,再用这个系数算每摄氏度对应的压力变化。
温度高到一定程度把空气中的氧气物质燃烧化为火焰传递热可导致物质融化融解高到极致便毁灭物质(质量)能量一切;温度低到一定程度便可以与水或空气或身体(血液)中的水分凝固成冰传递冷,冰冻可导致物质碎裂,冷到极致可碎裂物质质量能量一切危及生命的都可以改变物体的移动(运动)速度。
扩展资料:
把空气想像成一条柱,可以想到,离地面越近,上方空气柱越长,则气压越高,故气压是随海拔升高而降低的,是影响气压大小的主要因素,但影响气压的因素还有一个次要因素,是单位平方内的空气密度,如果空气的温度高,则空气分子之间会因温度高而运动频繁,则单位平方内的空气密度就会小,质量就会大,压力自然会大,温度低,则反之。
从分子运动论观点看,温度是物体分子运动平均动能的标志。温度是大量分子热运动的集体表现,含有统计意义。对于个别分子来说,温度是没有意义的。根据某个可观察现象(如水银柱的膨胀),按照几种任意标度之一所测得的冷热程度。
对于真空而言,温度就表现为环境温度,是物体在该真空环境下,物体内分子间平均动能的一种表现形式。物体在不同热源辐射下的不同真空里,物体的温度是不同的,这一现象为真空环境温度。比如,物体在离太阳较近的太空中,温度较高;物体在离太阳较远的太空中,反之,温度较低。这是太阳辐射对太空环境温度的影响。
参考资料来源:百度百科——压力
参考资料来源:百度百科——温度
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-mail:langhai8@163.com
本文链接:https://www.wumai.net/tianqi/20221226195508.html