当退火温度足够高、时间足够长时,在变形金属或合金的显微组织中,产生无应变的新晶粒──再结晶核心。其中,开始生成新晶粒的温度称为开始再结晶温度,显微组织全部被新晶粒所占据的温度称为终了再结晶温度或完全再结晶温度。常用的再结晶温度是指塑性变形度达到70%的材料在保温60min内,再结晶程度达到95%以上的最低温度。再结晶过程所占温度范围受合金成分、形变程度、原始晶粒度、退火温度等因素的影响。我的引物退火温度怎么算。退火的一个最主要工艺参数是最高加热温度,大多数合金的退火加热温度的选择是以该合金系的相图为基础的,如碳素钢以铁碳平衡图为基础(图1)。
再结晶温度t
工程上规定,经过大的冷塑性变形(变形是在70%以上)的金属,在1小时保温时间内能完成再结晶过程的最低温度,称为再结晶温度。
当退火温度足够高、时间足够长时,在变形金属或合金的显微组织中,产生无应变的新晶粒──再结晶核心。新晶粒不断长大,直至原来的变形组织完全消失,金属或合金的性能也发生显著变化,这一过程称为再结晶。
其中,开始生成新晶粒的温度称为开始再结晶温度,显微组织全部被新晶粒所占据的温度称为终了再结晶温度或完全再结晶温度。常用的再结晶温度是指塑性变形度达到70%的材料在保温60min内,再结晶程度达到95%以上的最低温度。再结晶过程所占温度范围受合金成分、形变程度、原始晶粒度、退火温度等因素的影响。实际应用中。
最低再结晶温度=aTm(K) 工业纯金属a=0.35-0.4 ,高纯金属a=0.25-0.35甚至更低 。其中:Tm-------金属的熔点,K---------K氏温度。
计算退火温度的方法:
1. 退火温度=4×(G+C)+2×(A+T)-(5~8) 只是粗算,有时不灵,但比较简便。
2.用primer5(or oligo6)计算,引物配对好后,primer5可以显示Tm,我认为这个值就是退火温度,我的经验再加2 or 3度最好。
3.合成引物的单子上也有个Tm,减去5~8也可,但有些公司提供的Tm就是方法1计算的。
我认为方法二最准确,
熔解温度(Tm)是引物的一个重要参数。这是当50%的引物和互补序列表现为双链DNA分子时的温度.Tm对于设定PCR退火温度是必需的。在理想状态下,退火温度足够低,以保证引物同目的序列有效退火,
同时还要足够高,以减少非特异性结合。合理的退火温度从55℃到70℃。退火温度一般设定比引物的
Tm低5℃。
设定Tm有几种公式。有的是来源于高盐溶液中的杂交,适用于小于18碱基的引物。
有的是根据GC含量估算Tm。确定引物Tm最可信的方法是近邻分析法。这种方法从序列一级结构和相邻碱基的特性预测引物的杂交稳定性。大部分计算机程序使用近邻分析法。
根据所使用的公式及引物序列的不同,Tm会差异很大。因为大部分公式提供一个估算的Tm值,所有退火温度只是一个起始点。可以通过分析几个逐步提高退火温度的反应以提高特异性。开始低于估算的Tm5℃,以2℃为增量,逐步提高退火温度。较高的退火温度会减少引物二聚体和非特异性产物的形成。
为获得最佳结果,两个引物应具有近似的Tm值。引物对的Tm差异如果超过5℃,就会引物在循环中使用较低的退火温度而表现出明显的错误起始。如果两个引物Tm不同,将退火温度设定为比最低的Tm低5℃
或者为了提高特异性,可以在根据较高Tm设计的退火温度先进行5个循环,然后在根据较低Tm设计的退火温度进行剩余的循环。这使得在较为严紧的条件下可以获得目的模板的部分拷贝。
退火温度确定的计算公式是:4×(G+C)+2×(A+T)-(5~8)。退火温度(AnnealingTemperature)是指引物和模板结合时候的温度参数,当50%的引物和互补序列表现为双链DNA分子时的温度。它是影响PCR特异性的较重要因素。
在理想状态下,退火温度足够低,以保证引物同目的序列有效退火,同时还要足够高,以减少非特异性结合。合理的退火温度从55℃到70℃。退火温度一般设定比引物的Tm低5℃。
退火的一个最主要工艺参数是最高加热温度(退火温度),大多数合金的退火加热温度的选择是以该合金系的相图为基础的,如碳素钢以铁碳平衡图为基础(图1)。各种钢(包括碳素钢及合金钢)的退火温度,视具体退火目的的不同而在各该钢种的Ac3以上、Ac1以上或以下的某一温度。各种非铁合金的退火温度则在各该合金的固相线温度以下、固溶度线温度以上或以下的某一温度。
退火温度主要看退火的目的。
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-mail:langhai8@163.com
本文链接:https://www.wumai.net/tianqi/20221222162505.html