当前位置:首页 > 天气预报 > 正文

温度特性(热敏材料的温度特性)

热敏电阻温度特性的测量原理是什么?热敏电阻温度特性的测量原理利用热敏电阻作为感温元件,并且配有温度显示装置的温度仪表称为热敏电阻温度计热敏电阻能把温度信号变成信号,从而实现了非电量的测量。热敏电阻的基本特性是它的温度特性,许多材料的电阻随温度的变化而发生变化,纯金属和许多合金的电阻随温度增加而增加,它们具有正的电阻温度系数。物体的温度反映了物体内部分子运动平均动能的大小。当以数值表示温度时,即称之为温度度数。温度是表征物体冷热程度的物理量。电容温度系数是电容器陶瓷、微波陶瓷等材料的重要的电性能指标之一。发光二极管的温度特性耐高温。

热敏电阻温度特性的测量原理是什么?

温度特性(热敏材料的温度特性)

热敏电阻是对温度变化表现出非常灵敏的一种半导体电阻元件,它能测量出温度的微小变化,并且体积小,工作稳定,结构简单。因此,它在测温技术、无线电技术、自动化和遥控等方面都有广泛的应用。

热敏电阻温度特性的测量原理

利用热敏电阻作为感温元件,并且配有温度显示装置的温度仪表称为热敏电阻温度计热敏电阻能把温度信号变成信号,从而实现了非电量的测量。值得提出的是,电量测量是现代测量技术中简便的测量技术,不仅测量装置简单、造价低、灵敏度高、而且容易实现自动化控制,是测量技术的一个重要的发展趋势。

热敏电阻的基本特性是它的温度特性,许多材料的电阻随温度的变化而发生变化,纯金属和许多合金的电阻随温度增加而增加,它们具有正的电阻温度系数。另外像炭、玻璃硅和锗等材料的电阻随温度的增加而减小,具有负的电阻温度系数。

在半导体中原子核对价电子的约束力要比金属中大,因载流子数少,故半导体的电阻率较大而纯金属的电阻率较小。由于半导体中载流子数目是随着温度的升高而按指数规律急剧增加,载流子越多,导电能力越强,电阻率就越小,因此半导体热敏电阻的阻值随着温度的升高电阻率将按指数规律减少。

温度的性质

物体的温度反映了物体内部分子运动平均动能的大小。分子运动愈快,物体愈热,即温度愈高;分子运动愈慢,物体愈冷,即温度愈低。这种现象被描述为一个物体的热势,或能量效应。当以数值表示温度时,即称之为温度度数。

温度是表征物体冷热程度的物理量。温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。它规定了温度的读数起点(零点)和测量温度的基本单位。目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。

温度是物体内分子间平均动能的一种表现形式。

电容温度特性是什么?

电容温度特性是在温度高时电容可以变高也可以变底。

电容器:

是一种能储存电荷的容器,它是由两片靠得较近的金属片,中间再隔以绝缘物质而组成的,按绝缘材料不同,可制成各种各样的电容器。

电容温度:

系数表达式为:αc=(式中:αc为电容温度系数,C为给定温度下的标称电容,dC为当温度变化dt时电容的变化值,dt为温度的变化值)。如在某温度范围内,则电容量的平均温度系数的表达式为:(式中C为电容量;Δt为温度变化值,ΔC为温度变化Δt时电容量的变化值)。电容温度系数是电容器陶瓷、微波陶瓷等材料的重要的电性能指标之一。

电容对温度比较敏感,不论是环境温度过高还是过低,都会导致容量的下降,甚至损坏。很多系统为了简化系统,降低成本,大多采用阻容式复位电路实现,当电容因为温度过低或过高的时候,电容的容量过低,导致复位脉冲信号保持时间过短,进而是系统复位异常,造成系统不稳定。另外电容的另一个作用是电源滤波,容量的下降必然导致原先设计的滤波性能下降。对于一些对电源纹波比较敏感的电路,必然导致可靠性的下降。

三极管的温度特性

随着温度的升高,三极管的工作效用越高。三极管全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件。其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。

三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。

扩展资料:

三极管的相关原理:

1、发射区向基区发射电子:电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。

2、基区中电子的扩散与复合:电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。

3、集电区收集电子:由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。

参考资料来源:百度百科-三极管

参考资料来源:百度百科-开关三极管

红光LED的温度特性

红光LED的温度特性:LED的焊接温度应在250摄氏度以下,焊接时间控制在3到5秒之间,LED的亮度输出与温度成反比。温度不仅影响LED的亮度,也影响它的寿命,使用中尽量减少电路发热,并做一定的散热处理,要注意避免LED温度过高从而使芯片受损。

红光LED应用

采用高纯度、高功率密度的红光、蓝光及黄光对皮肤进行照射能改变细胞结构杀死细菌,为新生细胞提供一个适合的环境,增强新胶原质弹性蛋白和胶原蛋白的生成促进细胞生长,能修复炎性痤疮老化肌肤、缓解日晒灼伤皮肤而不伤害到皮肤能美白皮肤、促进皮肤弹性。

LED发光二极管,是一种能够将电能转化为可见光的固态的半导体器件,它可以直接把电转化为光,LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。

发光二极管的温度特性

发光二极管的温度特性耐高温。发光二极管工作温度为-30-80℃,发光二极管耐高温80°c。在安全的操作环境下,达到10万小时的寿命,即便是在50度以上的高温,使用寿命还有约4万小时。