当前位置:首页 > 天气预报 > 正文

脆性温度(铝合金低温脆性温度)

耐候钢的回火脆性温度范围是多少?第一类回火脆性又称不可逆回火脆性,低温回火脆性,主要发生在回火温度为250~400℃时;第二类回火脆性又称可逆回火脆性,高温回火脆性。玻璃化温度和脆性温度是聚合物在低温下,力学性能发生形态突变时的对应温度。橡胶在温度低到一定的温度后会失去弹性变硬变脆,此温度是橡胶脆性温度。

耐候钢(低碳微合金钢)的回火脆性温度范围是多少?

脆性温度(铝合金低温脆性温度)

第一类回火脆性又称不可逆回火脆性,低温回火脆性,主要发生在回火温度为

250~400℃时;第二类回火脆性又称可逆回火脆性,高温回火脆性。发生的温度在

400~650℃。低碳微合金钢比该上限温度更高一些。

什么是475°C脆性?

475度脆性:

高铬铁素体不锈钢在400~540度范围内长期加热会出现这种脆性,由于其最敏感的温度在475度附近,故称475度脆性,此时钢的强度、硬度增加,而塑性、韧性明显下降.

回火脆化:通常有两类.

第一类回火脆性,指一些合金结构钢在250~400度之间回火后发生常温韧性下降的现象,通常一发生就不易消除,称为不可逆回火脆性.

第二类回火脆性,指长时间在450~600度甚至更高温度间回火后缓冷的情况下发生脆化现象,一般是Ni-Cr或Ni-Cr-Mo-V低合金中高温用钢的回火脆性倾向较明显.这种现象可在制造过程中由回火处理或焊后热处理保温及缓冷产生,也可由长期处于回火脆性温度下操作产生.

脆性温度与玻璃化转变温度是什么关系?

脆性温度与玻璃化转变温度是什么关系?

玻璃化温度和脆性温度是聚合物(包括橡胶)在低温下,力学性能发生形态突变时的对应温度。这种力学行为可以外力作用下的形变来表征。假定以固定负荷来测定其温度突变时橡胶的形变量,则随着温度由低到高,可分成A,B,C,D,E五个分区,如图所示

图1,温度变化时橡胶形变量的变化

A-

玻璃态B过渡区C高弹态D过渡区E粘液态;Tb-脆性温度Tg-玻璃化温度Tf-粘流温度

图1中,A区的温度在玻璃化温度Tg和脆性温度Tb之间,在此区间,橡胶处于玻璃态,仅一小部分链段,侧基、支链和较小链节能作内旋转,就是说,橡胶分子只能在原位振动,且形变量极为有限。C区的温度在Tb和Tf(粘流温度)之间。在此区间,橡胶处于高弹态,当受外力作用时,形变量较大。当被拉伸时,分子链由卷曲状变为伸直,而外力去除后,分子链又恢复到卷曲状。这种形变被称为高弹性形变或弹性形变。此时的橡胶柔软而富有弹性。当外界温度升高到Tf(粘流温度)后,橡胶进入了E区,其状态由高弹态转入粘流态(高粘度流体状态)。此时,当橡胶受外力作用时,整个分子链和局部链段都作运动,形变非常容易而强烈,形变量大而且不可逆,这种形变称为塑性形变。

图中的B和D是两个狭窄的过渡区,其中B区是A区向C区转移的过度区;而D区是C和E之间的过渡区。因此,玻璃化温度在Tg表征橡胶达到玻璃态时的特定温度。而在Tg-Tb的A区内,橡胶虽处于玻璃态但其玻璃特征是不完整、不彻底的,因为在外力作用下,它还是有微量的形变产生。所以不能把玻璃态和玻璃化温度混为一谈。正确的概念应该是,Tg是橡胶完全丧失弹性时的特定起始温度;而玻璃态则是橡胶在低温下,接近于玻璃状态但仍保留微量弹性的状态。

A区另一端所对应的温度点是脆性温度Tb,其物理意义是橡胶在外来冲击力下出现断裂时的最高温度。换言之,外界温度高于此点,外力冲击就不在使它断裂。用脆性温度来衡量橡胶的低温性能更具有实用意义,因为温度高于此点,橡胶就进入高弹态,而玻璃化温度是橡胶保留弹性的最低温度极限,低于此,则弹性就完全消失了。所以,对于耐寒橡胶来说,总是把脆性温度Tb,而不是把玻璃化温度Tg作为考核指标。

通常,橡胶的低温性能主要取决于橡胶的分子结构。因为主链结构,侧基、极性等发生变化时,Tg、Tb也随之变化。凡是主链柔软、侧基少且不带极性基因的橡胶Tg,Tb均为偏低,如天然橡胶、顺丁橡胶就是典型代表。一般而言,各胶种的Tb比Tg高出15-20℃。当然,也有个别例外,如顺丁橡胶的Tb比Tg高出50℃,原因是其主链结构的两侧所连接的全是氢原子而非基团,因此柔顺度特别高,故Tg特别低,出现反常情况,各胶种的Tg和Tb详见表1

除了胶种以外,配合增塑剂也有助于降低玻璃化温度和脆性温度。因为它们都能提高分子链的柔软性,增进流动性。

差示扫描量热仪(DSC)将与材料转变相关联的温度和热流作为时间和温度的函数进行确定。该仪器还提供物理转变(由相变化、熔化、氧化以及其他与热相关的变化引起)期间材料吸热(热量吸收)和放热(热量散发)过程的定量与定性数据。

差示扫描量热仪可检测的材料性质:

请教金属材料的脆性温度和具体原因分类?

这是金属材料的特性之一:任何金属材料在低温下的某一温度将会变脆(即塑性消失),这个由塑性转变为脆性的温度,就叫做低温脆性转变温度。

建筑金属腐蚀的主要形态:

①均匀腐蚀。金属表面的腐蚀使断面均匀变薄。因此,常用年平均的厚度减损值作为腐蚀性能的指标(腐蚀率)。钢材在大气中一般呈均匀腐蚀。

②孔蚀。金属腐蚀呈点状并形成深坑。孔蚀的产生与金属的本性及其所处介质有关。在含有氯盐的介质中易发生孔蚀。孔蚀常用最大孔深作为评定指标。管道的腐蚀多考虑孔蚀问题。

③电偶腐蚀。不同金属的接触处,因所具不同电位而产生的腐蚀。

扩展资料:

金属材料的疲劳现象,按条件不同可分为下列几种:

⑴高周疲劳:指在低应力(工作应力低于材料的屈服极限,甚至低于弹性极限)条件下,应力循环周数在100000以上的疲劳。它是最常见的一种疲劳破坏。高周疲劳一般简称为疲劳。

⑵低周疲劳:指在高应力(工作应力接近材料的屈服极限)或高应变条件下,应力循环周数在10000~100000以下的疲劳。由于交变的塑性应变在这种疲劳破坏中起主要作用,因而,也称为塑性疲劳或应变疲劳。

⑶热疲劳:指由于温度变化所产生的热应力的反复作用,所造成的疲劳破坏。

⑷腐蚀疲劳:指机器部件在交变载荷和腐蚀介质(如酸、碱、海水、活性气体等)的共同作用下,所产生的疲劳破坏。

⑸接触疲劳:这是指机器零件的接触表面,在接触应力的反复作用下,出现麻点剥落或表面压碎剥落,从而造成机件失效破坏。

参考资料来源:百度百科-金属材料

什么叫脆性临界温度

定义:

材料在加热或冷却到某一温度时冲击韧性发生突变,此温度就叫材料的脆性临界温度。

①物质处于临界状态时的温度。

②物质以液态形式出现的最高温度。

③温度不超过某一数值,对气体进行加压,可以使气体液化,而在该温度以上,无论加多大压力都不能使气体液化,这个温度叫该气体的临界温度。在临界温度下,使气体液化所必须的最小压力叫临界压力。

(2)说明

①每种物质都有一个特定的温度,在这个温度以上,无论怎样增大压强,气态物质不会液化,这个温度就是临界温度。降温加压,是使气体液化的条件。但只加压,不一定能使气体液化,应视当时气体是否在临界温度以下。因此要使物质液化;首先要设法达到它自身的临界温度。水的临界温度为374℃,远比常温度要高,因此,平常水蒸汽极易冷却成水,有些物质如氨、二氧化碳等,它们的临界温度高于或接近室温,对这样的物质在常温下很容易压缩成液体。有些物质如氧、氮、氢、氦等的临界温度很低,其中氦气的临界温度为一268℃。要使这些气体液化,必须相应的要有一定的低温技术,以使能达到它们各自的临界温度,然后再用增大压强的方法使它液化。

②通常把在临界温度以上的气态物质叫做气体,把在临界温度以下的气态物质叫做汽

什么是橡胶脆性温度

橡胶在温度低到一定的温度后会失去弹性变硬变脆,此温度是橡胶脆性温度。