当前位置:首页 > 天气预报 > 正文

温度红外(红外测温仪)

强度大,温度高红外线是一种电磁波,位于可见光红光外端,在绝对零度 以上的物体都辐射红外能量,是红外测温技术的基础。红外辐射的辐射度、辐射出射度、辐射强度、辐射功率等均是物理中有关红外辐射的相关计算量。红外测温仪的使用方法是什么?这是红外辐射理论的出发点,也是单波段红外测温仪的设计依据。红外线测温仪的原理红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。红外线测温仪现在已经用于电力、冶金、石化等多个方面了,甚至连航空运输方面也是红外线测温仪的领域。

红外辐射与温度的关系

温度红外(红外测温仪)

强度大,温度高

红外线是一种电磁波,位于可见光红光外端,在绝对零度(-273.15℃) 以上的物体都辐射红外能量,是红外测温技术的基础。

红外辐射的辐射度、辐射出射度、辐射强度、辐射功率等均是物理中有关红外辐射的相关计算量。

一般物体的热辐射

一般物体对辐射的吸收比总是小于1,因而发射热辐射的能力也小于黑体。对于它的辐射度,一般不直接测量,而是与同温度的黑体辐射进行比较,用一个比值表示其辐射特性。

首先,比较热辐射物体与同温度黑体在各个方向上的辐射度。前者的辐射度L可写成 L=ε,ψ)Lbb (16)

式中ε称为发射率,ε1。对于大部分具有实用价值的热辐射物体,ε与方向,ψ)无关。因而达类物体也具有朗伯型表面,M=πL关系同样适用。

其次,比较热辐射物体与黑体在各个温度及各波长的法向辐射度。利用上述关系就可得到物体的辐射出射度M

M=ε(T,λ)Mbb(T,λ) (17)

式中ε与波长和热辐射体的温度有关。但是,对于一些具有实用价值的热辐射物体,ε随λ的变化比较缓慢。在所需要的光谱范围内,可以把ε看作常数,或者取适当的平均值。这样,按普朗克公式对波长积分所得的斯忒藩定律可写成

M=ε(T)σT4 (18)

因而,对任一热辐射物体,都可以用一个比ε来描述它的热辐射性能。一般说来,ε是方向、温度和波长的复杂函数。但是,一些常用的热辐射体,大都具有朗伯型表面,ε随λ的变化缓慢,用一个对波长作适当平均的ε(T)就足以描述它的全部热辐射特性。

在前面讨论空腔热平衡时,曾得到式(12),将其与式(18)相比,即得

ε=α  (19)

即任何物体的吸收比与发射率在任何温度和任何波长时都相等。黑体是其中的一个特例,ε=α=1。

当α1时,投射到物体表面的辐射,一部分被反射,其余部分进入体内被吸收。但是,也有可能仅有一部分被吸收,而其余部分透过物体辐射出去。如果反射比(反射出去的辐射功率与入射辐射功率之比)为 ρ,透射比(透过物体的辐射功率与入射辐射功率之比)为τ,则按能量守恒定律,应有

α+ρ+τ=1 (20)

对于不透明物体τ=0,则得

α+ρ=1

因而有

ε=1-ρ (21)

在实践中,常用测量ρ的办法来求ε。

红外测温仪的使用方法是什么?

1、第一步是按下中间的红色按钮,持续10秒。此时,红外温度计会自动恢复出厂设置。

2、下一步是设置校准,然后将红外测温仪转到一边。注意这里有一个凹槽,如下图所示。

3、然后是用手或螺丝刀向右侧一推即可打开。

4、打开后,此时可以看到电池箱内有一个温度选择开关。默认位置为:℃(摄氏度)。

5、然后,将开关拨至“_”,并将温度显示单元设置为“_”。

6、最后一步是盖上电池盖。此时,可以看到显示已经切换到华氏温度,校准完成。

可以测量体温的红外,究竟是什么原理呢?

相信眼下大家每次出门都少不了要当一回刘德华:被小区或地铁工作人员拿着测温枪对着额头就来一发,呃不是,是照一发。有时工作人员会嘟囔“怎么这么低,35度不到”,碰到高温的,工作人员就紧张了,“37度?来重量一下!”。

为什么是“红外”?

我们刚说的测温枪,基本上是采用红外测温法。为什么会是“红外”呢?

英国物理学家F。 W。 赫胥尔在1800年作各色光研究时发现了红外线,当时称作“不可见之光”,赫胥尔用三棱镜将太阳光分解,并在各色光位置上放上温度计,结果发现位于红外线位置的温度计升温最快,红外线热作用强。之后人们花了一百多年的时间认识红外辐射的电磁本质,了解探索热辐射的基本规律,随着光学技术、电子技术等不断发展,红外技术也日趋完善,其中红外测温技术目前广泛应用于各个领域,其原理是利用物体表面的红外辐射来求得被测温度的。

任何物体只要它的温度高于绝对零度(-273度),就有热能转变的热辐射向外部发射,物体温度不同,其辐射出的能量不同,且辐射波的波长也不同,但总是包含着红外辐射在内,当物体的温度在千摄氏度以下时,其热辐射中最强的电磁波是红外波。

依据此原理,红外测温枪基本的测温过程是这样的:由人体发射出的能量经光学系统汇聚到红外探测器上,探测器将入射的辐射转换成为电压信号,电压信号送入接收系统后,经过数据处理及曲线自动拟合,最后准确推算出被测人体温度,以数字方式显示输出。

那测到红外辐射能量是怎么计算出物体温度,它们之间一个什么样的关系呢?

19世纪科学家斯特藩和玻耳兹曼通过实验和计算得出了黑体辐射定律:MB(T) = σT4 (σ为常数),这个定律告诉我们,单位时间从黑体单位面积上辐射出的总辐射能和其本身的热力学温度的4次方成正比。

当然实际物体(非黑体) 的辐射定律一般比较复杂,需借助于黑体的辐射定律来研究,主要是受物体的发射率影响,不同物体的发射率不同,可通过查表或实验得到,红外测温枪可以因物体材质、结构、厚度等等所导致的红外幅射力误差作出校正,比较准确地测出该物体的表面温度。

红外线测温仪的工作原理是什么?

红外线测温仪是利用波长在0.76~100μm之间的红外线,对物体进行扫描成像,来进行对物体的设备在线故障诊断和安全保护以及节约能源等,因此,红外线测温仪一直以来都是国家研究的重要项目,包括在日常生活中,甚至在医学领域中,都是充当着一个重要的角色,为我们检测出许许多多存在却看不见的问题,但是他的工作原理是什么?小编为你们解释。

红外测温的理论原理

在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中就包含了波段位于0.75μm~100μm的红外线。他最大的特点是在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质称为黑体,并设定他的反射系数为1,其他的物质反射系数小于1,称为灰体,由于黑体的光谱辐射功率P(λT)与绝对温度T之间满足普朗克定。说明在绝对温度T下,波长λ处单位面积上黑体的辐射功率为P(λT)。根据这个关系可以得到相应的的关系曲线,即可的出:

(1)随着温度的升高,物体的辐射能量越强。这是红外辐射理论的出发点,也是单波段红外测温仪的设计依据。

(2)随着温度升高,辐射峰值向短波方向移动(向左),并且满足维恩位移定理 ,峰值处的波长 与绝对温度T成反比,虚线为 处峰值连线。这个公式告诉我们为什么高温测温仪多工作在短波处,低温测温仪多工作在长波处。

(3)辐射能量随温度的变化率,短波处比长波处大,即短波处工作的测温仪相对信噪比高(灵敏度高),抗干扰性强,测温仪应尽量选择工作在峰值波长处,特别是低温小目标的情况下,这一点显得尤为重要。

红外线测温仪的原理

红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。被测物体和反馈源的辐射线经调制器调制后输入到红外检测器。两信号的差值经反放大器放大并控制反馈源的温度,使反馈源的光谱辐射亮度和物体的光谱辐射亮度一样。显示器指出被测物体的亮度温度。

这是小编总结的红外线测温仪的原理,大家是否清楚知道了?就是测量温度在绝对零度以上的物体,都会因自身的分子运动而辐射出的红外线。它在检查、维修和标定的温度方面能够大大提高工作效率,节约时间,提高设备和系统的可用率。红外线测温仪现在已经用于电力、冶金、石化等多个方面了,甚至连航空运输方面也是红外线测温仪的领域。