锅炉主蒸汽温度低的现象、原因及处理方法?????各段工质温度下降,严重时蒸汽管道发生冲击现象。因此,在主蒸汽温度降低的同时应降低压力,是汽轮机热力过程线尽量与设计工况下的热力过程线重合,以提高机组排汽干度。蒸汽有很多分类,在一个标准大气压下的蒸汽温度最高为100℃。这种超过饱和温度的蒸汽就称为过热蒸汽。
一、原因:燃料与给水的比例失调,燃烧量偏小或给水流量偏大。减温水系统故障或自动失灵,使减温水流量不正常地增大。高旁减温水故障或自动失灵。
二、现象:主蒸汽温度低报警。各段工质温度下降,严重时蒸汽管道发生冲击现象。
三、处理方法:自动动作不正常时,应立即将其切至手动,手操调节使之恢复正常。减少减温水量,必要时关闭减温水隔绝门,并对过热器进行吹灰。适当增加燃料量或减少给水量,及时调整风量,必要时可适当提高过剩空气系数。
扩展资料:
清洁
打开燃烧机门,拆下后部外壳面板,拧开锅炉后侧清洁口的螺丝。用钢丝刷清洁燃气管道。用软毛刷清洁燃烧室。清除锅炉内的残渣,拧上清洁口的螺丝,关上燃烧机门,检查密封圈是否完整。
防冻
如果锅炉安装在温度低于0℃的地区,必须采取以下防护措施:如果锅炉房在室外,将室内温度降到15℃或18℃,使锅炉整天运行。如果房间内长时间无人,应将锅炉内的水排空。
阴极保护
锅炉各部件由不同材质构成(比如铸铁、铜、铝等)。为了防止电化学腐蚀,必须采取阴极保护措施。
主蒸汽温度压力变化对汽轮机运行的影响有:
1、主蒸汽压力升高:在机组额定功率下初压升高后蒸汽流量有所减少,各监视段压力相应降低,各中间级焓降基本保持不变,因此主蒸汽流量减少各中间级动叶应力均有所下降,隔板的压差和轴向推力也都有所减少。调节级前后压差虽有上升,但其危险工况不在额定负荷,
因此调节级和中间各级在主蒸汽压力上升时都是安全的。对于末几级叶片,由于前后压差的减小(级前压力减小),级的焓降减少,从强度观点看末几级叶片也是安全的。
当然,主蒸汽压力也不能过高,否则有可能造成机组过负荷,隔板、动叶过负荷及机组轴向位移大、推力轴承故障等不安全情况的发生。
2、主蒸汽压力下降:在主蒸汽压力下降后机组仍要发出额定功率,则主蒸汽流量会相应增加。因此会引起非调节级各级级前压力升高,而末几级焓降增大,因此非调节级各级的负荷都有所增加,
末几级过负荷最为严重,全机的轴向推力也相应增大。因此运行中主蒸汽压力下降机组应适当带负荷。
3、主蒸汽温度升高:主蒸汽温度升高从经济性角度来看对机组是有利的,它不仅提高了循环热效率,而且减少了汽轮机的排汽湿度。但从安全角度来看,主蒸汽温度的上升会引起金属材料性能恶化缩短某些部件的使用寿命,如主汽阀、调节阀、轴封、法兰、螺栓以及高压管道等。
对于超高参数机组,即使主蒸汽温度上升不多也可能引起金属急剧的蠕变,使许用应力大幅度的降低。因此绝大多数情况下不允许升高初温运行的。
4、主蒸汽温度降低:在机组额定负荷下主蒸汽温度下降将会引起蒸汽流量增大,各监视段压力上升。此时调节级是安全的,但是非调节级尤其是最末几级焓降和主蒸汽流量同时增大将产生过负荷,是比较危险的。
同时,蒸汽温度下降会引起末几级叶片湿度的增加,增大了湿汽损失,同时也加剧了末几级叶片的冲蚀作用,直接威胁倒汽轮机的安全运行。因此,在主蒸汽温度降低的同时应降低压力,是汽轮机热力过程线尽量与设计工况下的热力过程线重合,以提高机组排汽干度。
因此机组的功率限制较大,必要时应申请减负荷运行。
5、当使用射汽抽气时,应先进行蒸汽暖管,再投入主抽气器和启动抽气器。现在一般在我国都采用射水抽气器,应先启动射水泵,射水泵启动前应作联动试验,正常后使一台运行一台备用,以使凝汽器逐渐建立起真空。
机组启动时,真空值应高一些,以减少汽轮机转子冲动阻力和启动汽耗,另外排汽温度低,对刚建投运的凝汽器也较为有利。但真空值也不易过高,因真空过高会延长启动时间,主要因为真空值过高时,所需进汽量少,对汽轮机加热不利。目前我国启动真空一般为350-450mmHg。
扩展资料:
主汽温控制方法
常规的主汽温控制方法分为导前汽温微分信号的双冲量汽温控制、串级汽温控制、分段汽温控制及相位补偿汽温控制几种。但是,随着机组容量的逐渐增大,常规控制方法已经不能得到足够满意的控制质量,同时,由于工业过程逐渐复杂化,单一控制技术也远远无法达到要求。
因此,结合先进的控制理论和控制算法将成为今后研究的一大趋势。近几年已经出现了一些相类似的控制方法,主要有以下两类:一类是先进控制算法与传统控制方法相结合,另一类是先进控制算法之间的结合。主要包括 :
1、Smith预估控制及其改进型。
2、基于神经网络理论的各种控制策略,诸如单神经元控制器取代主蒸汽温度串级PID控制中主调节器的策略、基于BP神经网络提出主蒸汽温度的串级智能控制等。
3、基于模糊控制理论的各种控制策略,
诸如主蒸汽温度的模糊PID控制、模糊控制与基于专家系统整定的串级PID控制相结合的复合控
制策略,主蒸汽温度的Fuzzy-PI复合控制策略等。
4、基于状态反馈的控制策略,例如:基于现代控制理论中状态反馈控制原理的分级控制方法、状态反馈控制与串级PID控制相结合的主蒸汽温度控制策略、将状态反馈引入到锅炉主蒸汽温度中的一种多回路串级控制方法等。
5、其它控制策略,诸如基于鲁棒控制原理改进主蒸汽温度串级PID控制策略并指出在DCS系统中的实现方法、用预测智能控制器作为串级控制的主调节器以改善主蒸汽温度的迟延特性等。
我们所接触的是一个复杂多变的系统,难以建立被控对象的精确模型,而传统控制方法往往需要建立一个精确的数学模型。同时,由于一些被控对象带有大迟延和大惯性的动态特性,因而即使建立了数学模型,通常也不如一个有经验的操作人员进行手动控制效果好。
从20世纪七十年代开始,生物控制理论逐渐引起研究者的重视并迅速发展。目前神经网络控制已经发展得比较成熟,但是基于神经内分泌系统的生物智能控制理论研究才刚刚起步。
作为人体各种激素调节中心,神经内分泌系统具有较好的稳定性和适应性,通过将模糊理论与神经内分泌反馈调节机制算法相结合,优势互补,并应用于PID控制器中,可以对锅炉主汽温系统的对象特性和一般控制规律进行分析。
参考资料:百度百科-主气温控制
蒸汽有很多分类,在一个标准大气压下的蒸汽温度最高为100℃。
拓展资料:
蒸汽亦称“水蒸气”。 根据压力和温度对各种蒸汽的分类为:饱和蒸汽,过热蒸汽。蒸汽主要用途有加热/加湿;还可以产生动力;作为机器驱动等。
饱和蒸汽
当液体在有限的密闭空间中蒸发时,液体分子通过液面进入上面空间,成为蒸汽分子。由于蒸汽分子处于紊乱的热运动之中,它们相互碰撞,并和容器壁以及液面发生碰撞,在和液面碰撞时,有的分子则被液体分子所吸引,而重新返回液体中成为液体分子。开始蒸发时,进入空间的分子数目多于返回液体中分子的数目,随着蒸发的继续进行,空间蒸汽分子的密度不断增大,因而返回液体中的分子数目也增多。当单位时间内进入空间的分子数目与返回液体中的分子数目相等时,则蒸发与凝结处于动平衡状态,这时虽然蒸发和凝结仍在进行,但空间中蒸汽分子的密度不再增大,此时的状态称为饱和状态。在饱和状态下的液体称为饱和液体,其蒸汽称为干饱和蒸汽(也称饱和蒸汽)
过热蒸汽:
如果把饱和蒸汽继续进行加热,其温度将会升高,并超过该压力下的饱和温度。这种超过饱和温度的蒸汽就称为过热蒸汽。过热蒸汽有其本身的应用领域,如用在发电机组的透平,通过喷嘴至电机,推动电机转动。但是过热蒸汽很少用于工业制程的热量传递过程,这是因为过热蒸汽在冷凝释放蒸发焓之前必须先冷却到饱和温度,很显然,与饱和蒸汽的蒸发焓相比,过热蒸汽冷却到饱和温度释放的热量是很小的,从而会降低工艺制程设备的性能。
汽轮机正常运行时,主蒸汽温度应符合规程要求,过高或过低对机组都是不利的,具体如下:
主蒸汽温度过高的危害:1、主蒸汽在调节级内热降增加,在负荷不变的情况下,调节级的动叶片有可能再发生过负荷现象。2、主蒸汽温度过高,会使金属材料的机械强度降低,蠕变速度增加。汽缸、汽门、高压轴封等紧固部件发生松弛,导致设备的损坏或使用寿命缩短。3、汽温过高还会使各受热部件的热变形和热膨胀加大、若膨胀受阻则有可能引起机组振动。
主蒸汽温度过低的危害:1、在汽压不变时,汽温降低末几级的蒸汽湿度增大,对叶片的冲蚀加剧,叶片的使用寿命缩短。2、汽温急剧下降时,汽缸等高温部件会产生很大的热应力及热变形,严重时会使动、静部分发生摩擦。3轴向推力增加。
水蒸气的温度
在一个标准大气压下,水蒸气的最低温度就是100度。在100度时若继续放热就开始凝结成液态水了。100度以上的话,随便几度都能达到。
水蒸气的最高温度可以远远超过384°C。比如火电厂发电用的过热蒸汽就在800°C左右,因为水蒸气本身就是气体。
真正的水蒸气是无色透明,我们看到的白色水气,不是水蒸气,它是水蒸气遇冷液化形成的水雾。蒸汽烫伤非常严重,被热水烫稍微烫一下基本上红一下,或出点水痘。
水蒸气的变化形态
雨
水在常温下,会慢慢地变为水蒸气飞散到空中,这种现象就叫蒸发。地上的水变成了水蒸气, 这些水蒸气在天上形成了云;如果水蒸气凝结成较大的水滴,水滴就会落下来形成雨或者雪。
白气
大量水蒸气在空气中凝结时,常呈现一团"白气”状,“白气”常被误认为水蒸气。 使沸腾的水变成的水蒸气在空气中受冷,便可通过比较“白气”和水蒸气的颜色、形态、 发生部位的不同,可以知道“白气”不是水蒸气,而是水蒸气凝结成的小水滴漂浮在空气中。一般我们称“白气”为“雾”。
水蒸气气体介绍
水蒸气,简称水汽或蒸汽,是水的气体形式。当水达到沸点时,水就变成水蒸气。在海平面一标准大气压下,水的沸点为99.974°C或212°F或373.15K。当水在沸点以下时,水也可以缓慢地蒸发成水蒸气。而在极低压环境下(小于0.006大气压),冰会直接升华变水蒸气。水蒸气可能会造成温室效应,是一种温室气体。
此外,水蒸气不是能源,也不是二次能源,更不是再生能源,水蒸气只是水以气态方式存在的一种表现。
气态水是大气很小但重要的组成部分。大约有99.99%是在对流层中。冷凝水蒸气到液体或冰的阶段主要由云,雨,雪,和其他沉淀物完成,而所有这些也是最重要的天气要素。
雾和云的形成,通过缩合周围云凝结核。若是在缺乏核的状态,凝结只能发生在更低的温度上。在持续凝结或沉积后,云滴或雪花形成,并促成它们达到了临界质量。
平流层的水蒸气平均停留时间是10天左右。水的补充、降水、蒸发,是海洋,湖泊,河流和植物蒸腾及其他生物和地质过程作用的结果。
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-mail:langhai8@163.com
本文链接:https://www.wumai.net/tianqi/20230102041507.html