家用光纤网线能耐多少度高温?光纤的温度特性是指在高、低温条件下对光纤损耗的影响。发光二极管发射调制的激励光, 经聚光镜耦合到Y型光纤的分支端, 由Y型光纤并通过光纤耦合器耦合到光纤温度传感头。光纤温度传感器,是一类利用在光线在光线中传输时,光的振幅、相位、频率、偏振态等随光纤温度变化而变化的原理制作的传感器。而功能型的光纤传感器就是利用温度和这种影响的关系,做出的传感器。当温度变化时,两束光由于相位不同而发生干涉,干涉产生的光强按正弦规律周期性变化并与长度差 L2-L2 成正比 通过干涉式温度传感器光强的检测,可达到检测温度的目的。
标准光纤网线的工作温度为:
-40ºC ~ +75ºC
介绍:
光纤和同轴电缆相似,只是没有网状屏蔽层,光纤的中心是光传播的玻璃芯。
光纤通信系统的主要优点有:
1、传输频带宽,通信容量大;
2、线路损耗低,传输距离远;
3、抗干扰能力强,应用范围广;
4、线径细,重量轻;
5、抗化学腐蚀能力强;
6、光纤制造资源丰富。
光纤的温度特性是指在高、低温条件下对光纤损耗的影响。在低温条件下光纤损耗增大,这是由于光纤涂覆层、套塑层和石英的膨胀系数不同,有机树脂和塑料的热膨胀系数比石英大得多,低温收缩、高温伸长,光纤在这种轴向压缩力的作用下产生微弯使损耗增大。若在低温下工作,随着温度的不断降低,光纤损耗就不断增大,当温度降至-55℃左右时,损耗急剧增加,使系统无法正常运行。
料有光纤、光谱分析仪、透明晶体等,分为分布式、光纤荧光温度传感器。
从室温到1800℃全程测温的光纤温度传感器的系统主要包括端部掺杂的光纤传感头、 Y型石英光纤传导束、 超高亮发光二极管(LED)及驱动电路、 光电探测器、荧光信号处理系统和辐射信号处理系统。
系统的工作原理为: 在低温区(400℃以下), 辐射信号较弱, 系统开启发光二极管(LED)使荧光测温系统工作。 发光二极管发射调制的激励光, 经聚光镜耦合到Y型光纤的分支端, 由Y型光纤并通过光纤耦合器耦合到光纤温度传感头。
光纤传感头端部受激励光激发而发射荧光, 荧光信号由光纤导出, 并通过光纤耦合器从Y型光纤的另一分支端射出, 由光电探测器接收。
光电探测器输出的光信号经放大后由荧光信号处理系统处理, 计算荧光寿命并由此得到所测温度值。 而在高温区(400℃以上), 辐射信号足够强, 辐射测温系统工作, 发光二极管关闭。
辐射信号通过蓝宝石光纤并通过Y型光纤输出, 由探测器转换成电信号, 系统通过检测辐射信号强度计算得到所测温度。
光纤线本身不能被加热,否则会损坏内部的光纤导致通信中断。
光纤传递的是光信号,光纤对外也不会产生热量。
1500度左右光纤的材料是
二氧化硅
,二氧化硅是
硅原子
跟四个
氧原子
形成的
四面体
结构的
原子晶体
,整个晶体又可以看作是一个巨大分子,
SiO2
是
最简式
,并不表示单个分子。密度2.32g/cm3,熔点1723±5℃,沸点2230℃。希望对你有所帮助。
光纤温度传感器的结构原理有很多种。其基本系统结构如图。
光纤温度传感器,是一类利用在光线在光线中传输时,光的振幅、相位、频率、偏振态等随光纤温度变化而变化的原理制作的传感器。
光纤温度传感器一般分为两类:一类是光导纤维只起到传输光的作用,必须在光纤端面加装其它敏感元件才能构成新型传感器的传输型传感器;另一类是利用光导纤维本身具有的某种敏感功能而使光纤起测量温度的作用,属于功能型,光纤既感知信息,又传输信息。
传输型传感器:
根据几何光学理论(参照上图),当光线以某—较小的入射角,由折射率为n1的光密物质射向折射率为n2的光疏物质,则一部分入射光以折射角折射入光疏物质,其余部分以角度反射回光密物质。 当光线的入射角θ1增大到某一角度θc时,透射入光疏物质的折射光则沿界面传播,当入射角θ1θc 时,光线不会透过其界面,而全部反射到光密物质内部,也就是说光被全反射。根据这个原理(参照下图),只要使光线射入光纤端面的光与光轴的夹角θ0小于一定值,则入射到光纤纤芯和包层界面的φ1角就满足大于临界角的条件,光线就射不出光纤的纤芯。光线在纤芯和包层的界面上不断地产生全反射而向前传播,光就能从光纤的一端以光速传播到另一端,这就是光纤传光的基本原理。
从光纤的传输原理可知,在特定条件下,光在光纤中不是沿着纤芯传递的,而是反复折射传递的。
这时纤芯、包层的密度,射入纤芯的外来光线都可以影响光在纤芯中传输的振幅、相位、频率、偏振态。而功能型的光纤传感器就是利用温度和这种影响的关系,做出的传感器。
例如:干涉式光纤温度传感器:(如下图 )来自激光器的光束被波导分成两路,分别经过 L1 和 L2 两条光纤后,在输出端重新合成。当温度变化时,两束光由于相位不同而发生干涉,干涉产生的光强按正弦规律周期性变化并与长度差 L2-L2 成正比 通过干涉式温度传感器光强的检测,可达到检测温度的目的。
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-mail:langhai8@163.com
本文链接:https://www.wumai.net/tianqi/20221230035512.html