当前位置:首页 > 天气预报 > 正文

电阻随温度(电阻随温度的变化关系)

由于α比金属的线膨胀显著得多,在考虑金属电阻随温度变化时,其长度l和截面积S的变化可略,故R=R0,式中和分别是金属导体在t℃和0℃的电阻。

电阻与温度关系公式

电阻随温度(电阻随温度的变化关系)

1、电阻温度换算公式:

R2=R1*(T+t2)/(T+t1)

t1-----绕组温度

T------电阻温度常数(铜线取235,铝线取225)

t2-----换算温度(75

°C或15

°C)

R1----测量电阻值

R2----换算电阻值

2、在温度变化范围不大时,纯金属的电阻率随温度线性地增大,即ρ=ρ0(1+αt),式中ρ、ρ0分别是t℃和0℃的电阻率

,α称为电阻的温度系数。多数金属的α≈0.4%。

由于α比金属的线膨胀显著得多(

温度升高

1℃

金属长度只膨胀约0.001%)

,在考虑金属电阻随温度变化时

其长度

l和截面积S的变化可略,故R

R0

(1+αt),式中和分别是金属导体在t℃和0℃的电阻。

3、电阻温度系数

当温度每升高1℃时,导体电阻的增加值与原来电阻的比值,叫做电阻温度系数,它的单位是1代,其计算公式为

α=(R2-R1)/R1(t2--t1)

式中R1--温度为t1时的电阻值,Ω;

R2--温度为t2时的电阻值,Ω。

导体、半导体和绝缘体的电阻随温度的变化如何变化?

多数导体的电阻随温度的升高电阻增大,绝缘体的电阻极高,对温度的变化不明显。半导体的电阻对温度变化很敏感,因此常用于热敏电阻的制造,热敏电阻根据材料不同可以是正温度系数,也可以是负温度系数。

用一定的直流电压对被测材料加压时,被测材料上的电流不是瞬时达到稳定值的,而是有一衰减过程。

在加压的同时,流过较大的充电电流,接着是比较长时间缓慢减小的吸收电流,最后达到比较平稳的电导电流。被测电阻值越高,达到平衡的时间则越长。

扩展资料:

测量时为了正确读取被测电阻值,应在稳定后读取数值。在通信电缆绝缘电阻测试方法中规定,在充电1分钟后读数,即为电缆的绝缘实测值。

但是在实际上,此方法有些不妥,因为直流电压对被测材料加压时,被测材料上的电流是电容电流,既然是电容电流,就与电缆的电容大小有关。

电容大需要充电的时间就长,特别是油膏填充电缆,就需要的时间要长一些。所以同一类型的电缆,由于长度不一样,及电容大小不一样,充电时间为一分钟时读数显然是不科学,还需进一步研究和探讨。

电阻与温度的变化关系

导体的电阻与温度有关。纯金属的电阻随温度的升高电阻增大,温度升高1℃电阻值要增大千分之几。碳和绝缘体的电阻随温度的升高阻值减小。半导体电阻值与温度的关系很大,温度稍有增加电阻值减小很大。有的合金如康铜和锰铜的电阻与温度变化的关系不大。电阻随温度变化的这几种情况都很有用处。利用电阻与温度变化的关系可制造电阻温度计,铂电阻温度计能测量—263℃到1000℃的温度,半导体锗温度计可测量很低的温度。康铜和锰铜是制造标准电阻的好材料。

例如:电灯泡的灯丝用钨丝制造,灯丝正常发光时的电阻要比常温下的电阻大多少?

钨的电阻随温度升高而增大,温度升高1℃电阻约增大千分之五。灯丝发光时温度约2000℃,所以,电阻值约增大10倍。灯丝发光时的电阻比不发光时大得多,刚接通电路时灯丝电阻小电流很大,用电设备容易在这瞬间损坏。

电阻和温度的关系?

金属导体温度越高,电阻越大,温度越低,电阻越小。

超导现象:当温度降低到一定程度时,某些材料电阻消失。

电阻温度换算公式: R2=R1*(T+t2)/(T+t1) R2 = 0.26 x (235 +(-40))/(235 + 20)=0.1988Ω 计算值 80 A t1-----绕组温度 T------电阻温度常数(铜线取235,铝线取225) t2-----换算温度(75 °C或15 °C) R1----测量电阻值 R2----换算电阻值。

在温度变化范围不大时,纯金属的电阻率随温度线性地增大,即ρ=ρ0(1+αt),式中ρ、ρ0分别是t℃和0℃的电阻率 ,α称为电阻的温度系数。多数金属的α≈0.4%。

由于α比金属的线膨胀显著得多( 温度升高 1℃ , 金属长度只膨胀约0.001%) ,在考虑金属电阻随温度变化时 , 其长度 l和截面积S的变化可略,故R = R0 (1+αt),式中和分别是金属导体在t℃和0℃的电阻。

扩展资料:

电阻温度系数表示电阻当温度改变1度时,电阻值的相对变化,单位为ppm/℃。有负温度系数、正温度系数及在某一特定温度下电阻只会发生突变的临界温度系数。

当温度每升高1℃时,导体电阻的增加值与原来电阻的比值,叫做电阻温度系数,它的单位是1代,其计算公式为 α=(R2-R1)/R1(t2--t1) 式中R1--温度为t1时的电阻值,Ω; R2--温度为t2时的电阻值,Ω。

电阻温度系数并不恒定而是一个随着温度而变化的值。随着温度的增加,电阻温度系数变小。因此,我们所说的电阻温度系数都是针对特定的温度的。

对于一个具有纯粹的晶体结构的理想金属来说,它的电阻率来自于电子在晶格结构中的散射,与温度具有很强的相关性。

实际的金属由于工艺的影响,造成它的晶格结构不再完整,例如界面、晶胞边界、缺陷、杂质的存在,电子在它们上面的散射形成的电阻率是一个与温度无关的量。因此,实际的金属电阻率是由相互独立的两部分组成。

参考资料:百度百科——电阻温度系数

电阻与温度的关系

导体的电阻与温度有关.纯金属的电阻随温度的升高电阻增大,温度升高1℃电阻值要增大千分之几.碳和绝缘体的电阻随温度的升高阻值减小.半导体电阻值与温度的关系很大,温度稍有增加电阻值减小很大.有的合金如康铜和锰铜的电阻与温度变化的关系不大.电阻随温度变化的这几种情况都很有用处.利用电阻与温度变化的关系可制造电阻温度计,铂电阻温度计能测量—263℃到1000℃的温度,半导体锗温度计可测量很低的温度.康铜和锰铜是制造标准电阻的好材料.

例如:电灯泡的灯丝用钨丝制造,灯丝正常发光时的电阻要比常温下的电阻大多少?

钨的电阻随温度升高而增大,温度升高1℃电阻约增大千分之五.灯丝发光时温度约2000℃,所以,电阻值约增大10倍.灯丝发光时的电阻比不发光时大得多,刚接通电路时灯丝电阻小电流很大,用电设备容易在这瞬间损坏.

温度对电阻的影响是什么?

当为金属时,温度越高电阻越大。

原因:金属导电是因为其内部有自由运动的电子(无规则)。当温度上升时,这些电子会加剧地来回振动,以致于阻碍电流。非金属物质(部分半导体)温度越高电阻越小。原因:当温度上升时,其内部电子运动加剧(但不会来回振动),进而可以运载电荷。

如金属的电阻总是随温度的升高而增大,这是因为当温度升高时,金属中分子热运动加剧的结果。当导体电阻为1Ω时,温度变化1℃,其电阻变化的数值称为电阻温度系数。康铜、锰铜的电阻温度系数很小,它的电阻几乎不受温度影响,所以常用来制造标准电阻或变阻器。

有的物质(如电解液)当温度升高时,由于正、负离子运动加快,电阻反而减小,其电阻温度系数则为负值。