全宇宙最高和最低的温度各是多少?因为宇宙在爆炸过程中飞速膨胀,因此,宇宙空间内部充斥着大量的热能,从而达到了普朗克温度。宇宙形成后10负36次方秒,宇宙温度达到10000亿亿亿 ,而人类观测到的最高温度是伽马射线爆,几分钟释放的能量可以达到太阳1万亿年释放的能量总和。组成物体的粒子的热运动是物体产生温度的根本原因,所以温度的高低表示了粒子热运动的平均动能的大小。目前的理论认为,只有在宇宙大爆炸的普朗克时间,温度才有达到过普朗克温度。目前在宇宙中已知最高温度是在双中子星合并过程中产生的,温度为3500亿度。
最低绝对零度,也就是-273.15℃(摄氏度).
1000000000℃(10亿摄氏度)及以上 宇宙大爆炸
宇宙大爆炸那一刻,温度达到无穷大;宇宙大爆炸后10负44次方秒,温度约为10000兆兆兆(一兆等于一万个一亿)度;宇宙大爆炸后10负36次方秒,宇宙温度继续下降,当时的温度约为10000兆兆度;宇宙大爆炸后10负32次方秒,温度约为1兆兆度;宇宙大爆炸10负12次方秒后,温度达到10000兆度;宇宙大爆炸后10负6次方秒,温度达到1兆度;宇宙大爆炸后10负4次方秒,温度达到1000亿度,这也是超新星爆发时其星核的温度;宇宙大爆炸后1秒,温度降低到约为100亿度;在大爆炸后的大约3秒,温度降到了10亿度,这也是最热的恒星内部的温度.
绝对的最高温度
粒子的能量是通过运动来表现的,绝对零度的意义,就是物体内所有原子都静止,不再有任何热运动
那么,粒子运动速度越快能量越高,宏观物质的温度也越高,粒子本身是没有温度的只能通过能量来表现其温度,所以,在一定压力下,每个粒子的运动速度都接近光速,能量也趋于无限大那就是温度的极限,也就是绝对的最高温度
1.4*10^32开。这个温度,被物理学称之为“普朗克温度”。因为宇宙在爆炸过程中飞速膨胀,因此,宇宙空间内部充斥着大量的热能,从而达到了普朗克温度。我们都知道,物理学中,宇宙中存在着一个“极限低温”。
这个极限低温,代表了温度的下限,被我们叫做“绝对零度”。上过初中物理课的朋友,应该对它都是印象深刻。绝对零度是多少?零下两百七十三度。那么,宇宙中有没有与绝对零度相对应的“最高温度”呢?
当然也有。那它是多高呢?零上两百七十三度吗?开玩笑,太阳表面的温度,就已经在八千摄氏度以上了。人类在引爆氢弹的刹那间,也会让原子核达到两万以上的摄氏度。宇宙的“极限温度”,还要比这些高的多的多。
这种“极限高温”,只在一百三十亿年前,宇宙大爆炸的时候,短暂的出现过一次。它被上世纪著名物理学家普朗克所发现,因此,我们把它称为“普朗克温度”。
宇宙来源于一个内部密度,质量都达到了“无穷大”的史瓦西奇点;史瓦西奇点在某种外部力量的刺激下,急速爆炸,从而让宇宙有了时间和空间,可观测宇宙逐渐成型。当时,剧烈膨胀到来的温度增高,是显而易见的。
根据宇宙的九百三十亿光年直径,以及上世纪天文学家哈勃提供的“红移信号”,普朗克最终计算出了所谓的“普朗克温度”到底有多高:1.4*10^32开。
这对人类来说,是一个近乎无限理解的天文数字。可以说,假如普朗克温度再在宇宙中出现一次的话,那么一切星球,一切文明都会在刹那间融化。这不是危言耸听。
最高的温度,宇宙大爆炸时的温度最高,绝对0度最低.人类所能产生的最高温是510000000℃约比太阳的中心热30倍,该温度是美国新泽西的普林斯顿等离子物理实验室中的托卡马克核聚变反应堆利用氘和氚的等离子混合体於1994年5月27日创造出来的.
宇宙大爆炸那一刻,温度达到无穷大;宇宙大爆炸後10负44次方秒,温度约为1亿亿亿亿度;宇宙大爆炸後10负36次方秒,宇宙温度继续下降,当时的温度约为10000亿亿亿度;宇宙大爆炸後10负32次方秒,温度约为1亿亿亿度;宇宙大爆炸10负12次方秒後,温度达到1亿亿度;宇宙大爆炸後10负6次方秒,温度达到10000亿度;宇宙大爆炸後10负4次方秒,温度达到1000亿度,这也是超新星爆发时其星核的温度;宇宙大爆炸後1秒,温度降低到约为100亿度;在大爆炸後的大约3秒,温度降到了10亿度,这也是最热的恒星内部的温度.(来源:大科技) 1848年,英国科学家威廉·汽姆逊·开尔文勋爵(1824~1907)建立了一种新的温度标度,称为绝对温标,它的量度单位称为开尔文(K).这种标度的分度距离同摄氏温标的分度距离相同.它的零度即可能的最低温度,相当于摄氏零下273度(精确数为-273.15℃),称为绝对零度.因此,要算出绝对温度只需在摄氏温度上再加273即可.当物质达到绝对零度时分子便会停止活动所以人们认为温度永远不会接近于0K,但今天,科学家却已经非常接近这一极限了.目前,人们甚至已得到了距绝对零度只差三千万分之一度的低温,但仍不可能得到绝对零度.
宇宙形成后10负36次方秒,宇宙温度达到10000亿亿亿 ,而人类观测到的最高温度是伽马射线爆,几分钟释放的能量可以达到太阳1万亿年释放的能量总和。
目前通过观测宇宙,认为宇宙最初形成于同一处,星系红移和宇宙微波背景的观测,让我们知道宇宙在不断扩张和逐渐冷却,也可以推测出各星系在最初时距离比较近,因此推断所有星系都有一个共同起源。试想一下将现在930亿光年直径的宇宙,压缩在一个很小的地方,密度趋近于无限,引力作用产生的能量也是非常非常庞大的,温度也就非常高。具体有多高说不清,大概比人类所能观测到的高得多的多。
伽马射线爆是超大质量恒星坍塌碰撞、中子星碰撞或者黑洞融合的时候,因为巨大的质量损失转化来的能量,是宇宙中最剧烈的爆炸。通常只能持续很短的时间,也有发现能持续数小时的。几分钟释放的能量可以达到太阳1万亿年释放的能量总和,温度也就异常之高,喷发出的能量扫过的地方,没有生命可以存在。但是它们又为新恒星的形成提供了契机,被喷射出的物质能量散布在宇宙空间,逐渐凝聚又形成恒星。
具体温度有多高不好说,但仅从人类观测的结果来说,短短几秒释放一万亿年太阳释放的能量综合,顺便提一下太阳寿命也才只有百十亿年,温度可以达到1万亿摄氏度以上,甚至高到难以想象。
关于这个问题,首先要知道温度究竟是怎么回事。从化学上来看,原子、离子和分子是物体的基本组成。组成物体的粒子的热运动是物体产生温度的根本原因,所以温度的高低表示了粒子热运动的平均动能的大小。如果粒子热运动的平均动能越大,即粒子的热运动越剧烈,则温度也越高。可见,粒子的平均动能决定着温度的高低。
由于不确定性原理,粒子的热运动不可能会完全停止下来,所以温度有一个下限,那就是绝对零度,它被定义为0 K,或者相当于-273.15 。再根据狭义相对论,组成物体的粒子的运动速度不可能达到光速,所以温度有一个上限,那就是普朗克温度,其大小约为1.4 10^32 K。或者根据黑体辐射理论和物理学的基本长度,物体辐射出的电磁波的波长只能大于等于普朗克长度,所以普朗克温度是温度的上限。
目前的理论认为,只有在宇宙大爆炸的普朗克时间(5.4 10^-44秒),温度才有达到过普朗克温度。目前在宇宙中已知最高温度是在双中子星合并过程中产生的,温度为3500亿度。而人类制造的最高温度比这还高,大型强子对撞机把高速运动的质子和原子核相撞,产生的最高温度可达10万亿度。
热力学温标里面,温度的理论下限是“绝对零度”,理论上限叫做“绝对热”(absolute hot),与绝对零度相对应。
在当代物理宇宙学理论下,可能的最高温度是普朗克温度,其值为1.416785(71) 10^32K。
【有绝对零度(absolute zero),也有绝对热(absolute hot)】
该如何理解普朗克温度?可以从两个方面去理解:
一、宇宙大爆炸之后,经过了普朗克时间(5.39 10^ 44s)后,宇宙的温度。在小于普朗克时间的尺度里,我们的物理理论失效,虽然那时候宇宙可能更热,但超越我们的认知极限了。
二、如果一个物体达到普朗克温度,它将发出对应于普朗克长度(1.616255(18) 10^ 35 m)波长的黑体辐射。如果温度更高,它将发出比普朗克长度更低波长的黑体辐射,我们缺乏相应的理论,失效again。
【越高的温度所对应的的黑体辐射波长峰值越小。】
----华丽分割,以上理论,以下现实----
普朗克温度只是一个根据量纲分析得来的理论温度,并没有什么现实意义。回归现实,还是要看看我们现实宇宙中的物质能够被加热到什么样的温度。
20世纪60年代,在欧洲核子研究委员会(CERN)工作的哈格多恩提出,在温度超级高的情况下,强子都将“熔化”(melt),所有我们熟悉的由强子组成的物质都将变成一碗“夸克汤”,经过计算,这个温度大约在2 10^12K,因此被称为“哈格多恩温度”。哈格多恩认为,处于哈格多恩温度下的系统可以容纳尽可能多的能量,因为形成的夸克提供了新的自由度,继续增加能量将只会增加熵,而不是温度,因此哈格多恩温度将是一个无法通过的绝对高温。
【德国物理学家哈格多恩】
也有反对者认为,夸克物质也可以被进一步加热。
这个分歧已经可以用实验来验证了,10^12K温度级别对现代的人类来说,已经不是难事。这种夸克物质已经在欧洲核子研究中心的SPS和LHC,以及美国布鲁克海文国家实验室的RHIC的重离子碰撞中被发现。
在弦论中,也引入了这个“哈格多恩温度”,它被定义为让宇宙最基本的单元:弦所发生相变所需的温度。这个温度非常高,在10^30K级别,只比普朗克温度少了两个数量级,人类目前只能望尘莫及了。
近年来,又有人提出,在量子热力学中,某些系统可以达到“负温度”。
其实,“负温度”的系统比任何正温度的系统都要热。如果负温系统和正温系统接触,热量将从负温系统流向正温系统。这不是矛盾了吗?明明是负,怎么会比正的还热呢?
为了解决这一矛盾,科学家创造出了“冷度”这个物理量,为温度和玻尔兹曼常数乘积的倒数,从而解决了这一矛盾。温度为正的系统,熵值随着能量的增加而增加,温度为负的系统,熵值随着能量的增加而减少。所以,负温度是为了解释一些量子现象而引入的概念,在非量子体系下没有意义。
如上图,绿色为摄氏温度,红色为华氏温度,蓝色是开氏温度,黑色就是“冷度”,单位为“吉比特/纳焦耳”。这里的开氏温度以绝对零度为0,而以无限温度(可能是普朗克温度)为1,则越过了中间高点以后,再“高”的温度其实是“负温度。”
当今没有任何人能准确的回答这样的问题。因为,人类远没有了解宇宙的皮毛,更何况具体问题。现在对宇宙下的任何结论都基于狂想,哪怕你掌握了一定的所谓科学手段,现在世界上有几个人弄懂了什么叫科学呢?
宇宙最高温度源于宇宙大爆炸之后5.391 10( 44次方) s,最高值为1.417 10(32次方) C。目前宇宙的最高温度记录是人类实验室创造的温度,比宇宙中最猛烈的超新星爆发温度高很多倍。以下列举几个高温示例。太阳表面温度5500 C;闪电28000 C;太阳核心1600万 C;核武器3.5亿 C;大质量恒星最后一天的核心温度30亿 C;融合中的双中子星系统3500亿 C;相对论重离子对撞机1万亿 C;CERN质子-核碰撞10万亿 C。人类实验室创造出来的最高温度只在宇宙大爆炸后一瞬间曾经达到过,模拟创造此温度持续的时间极短,范围极小,但却可以帮助科学家 探索 宇宙成因。宇宙大爆炸最初的温度无法超越,目前宇宙中所有的能量和物质都源于宇宙大爆炸奇点的能量。谈论比奇点还高的温度没有现实意义。
都说最高温是宇宙大爆炸的瞬间,不过这是人类猜测而已,毕竟谁也没见过,看过许多天文知识的人或者会感觉,所有天文知识都是猜想出来的,有些被许多人认同,所以显得十分正确而已。其实像看玄幻仙侠小说差不多,你信就觉得它合理,你不信就觉得它吹牛。
别说出了地球,单在地球内,谁也不知道最高温度是多少,或者个个都会说是地心内核,那有谁真正测量过地心的温度吗?还不是靠推测的。前苏联曾经想过钻一口深阱打穿地壳,做所谓的科学研究,结果不了了之。
靠猜测的东西,大家都能吹,没什么大不了的。目前,我们只能猜测星系中心是温度最高的,像银河系中心,注意:这个数据是人类猜测得来的,没谁去过银河中心量过。
至于最低温度,在漆黑的太空里四处隐藏,你找到其中一个冷点不代表它是最冷的。
看了几个别人的回答,忍不住要回答一波了。
热力学温度的基础是粒子运动,就是单纯的运动产生热,叫做热运动都是狭隘的。
产生热的根本要素只有一个,那就是——压力。
当我们拿着锤子砸铁,砸钉子,砸石头时,施加的只是单纯的压力。
图:砂轮切割,也是压力
当我们那锯子锯木头时,看似是施加的摩擦,其实还是压力。是锯齿的来回压迫了木头。
再有就是雪糕在夏天会冒热气,这个也是压力产生的。水分子结冰要的不只是零度,还有标准大气压这个环境。
在物理中:没有热运动,只有运动产生热。没有普朗克温度,没有最高,只有更高。
霍金说有黑洞,黑洞是大质量恒星坍缩而成的,在黑洞里已经没有粒子了,没原子,没有中子质子,没有夸克。因为天体物理学家们在寻找白矮星、中子星、夸克星,这些致密天体都不是黑洞, 黑洞的巨大压力已经压碎了夸克。
连夸克都没了,你跟人说普朗克温度,这是不是扯
目前,宇宙中最大的黑洞还没有找到,甚至连想象都无法想象。那么黑洞的压力大到什么程度,其内部温度就能高到什么地步。
再说超新星
超新星是大质量恒星核聚变结束后,内部失去了高热,表层物质极速往中心坍塌,挤压,就跟小孩子玩的摔炮是一样的,使劲儿摔在地上,压力挤压炸药发生了爆炸。
大质量恒星死亡时表层物质坍塌也会对中心造成巨大的压力,从而发生爆炸。爆炸的原理就是分子、原子、中子、质子等粒子被高压给挤碎了。这个叫做 引力干掉了强核力、弱核力、电磁力。
在于宇宙中,真正的王者之力就是引力。爱因斯坦说引力是物质扭曲了时空。
但他并没有说物质是如何扭曲时空的,怎样扭曲时空的。所以他的理论只是在描述表象,并没有谈到物质和时空的关系。
在物理学中,有正反粒子碰撞湮灭说法,这个也得到了证实。那么湮灭是什么呢,就是能量质量消失了,虽然也有释放一部分,但多数还是没了,不知道去了哪里。否则不能叫湮灭,只能叫消散,分解。
正反物质粒子为何会湮灭
我不是科学家,我不敢猜测,但是我觉得应该跟“时空”有关系。时空原本是均匀的,以前的牛顿就是这么认为的,不管是时间还是空间,在牛顿那里不扭曲。
爱因斯坦不认为时空是均匀的,他认为时间可以快慢不同,空间也可以拧巴扭曲。行星环绕恒星做圆周运动,就是行星的质量和速度与所处时空达到了平衡,所以才不会逃离,不会掉进太阳。
这个很好理解,就如同一块木头我们扔到水里,可以在木头上加铁,等木头的密度跟水的密度一致时,就会停在水中某一高度。
大海的水深浅不同,水的密度和压力也不同,我们扔一块跟水面密度差不多的物体下去,这个物体无论如何也沉不到海底,但它也不会浮出水面,而是停留在一定的高度,这就是物体与那个高度深度的水达到了平衡。
再有就是气球,我们松开手气球会往天上飞,若不考虑气球材质,认为它不会爆掉,那么气球也不会飞到大气层顶端,而是停在一定的高度。
飞机,鸟儿在天上飞,道理也是一样的,是其下方的气流密度超过了飞机鸟儿自身密度,这才将其托在天上。
行星绕恒星公转,其轨道所在就是它自身质量和速度与周围的时空达到了平衡。
人类发射的卫星也是一样的,上天之后,若想在某一个高度在轨运动,只需要调整自身的速度就可以了。
这个速度其实就是物质对时空施加压力,和物质自身质量扭曲时空是一样的,两个都是在挤压,扭曲时空。就像飞机,鸟儿压缩身下的空气,就像船只压缩水面。
既然物质能对时空施加压力,能扭曲时空,这说明物质和时空的关系类似飞机与空气,类似船只与海水河水。
那么,物质和时空在更高维度上,它们其实是一种东西。时空在达到特殊的条件会崩塌,崩塌的碎片就是我们所认为的物质,能量。
时空崩塌了一块,周围的时空挤压过来填补。而物质既然和时空同源,它处在时空中,也会挤压时空,从而改变时空的密度。
这就是爱因斯坦的物质扭曲时空的原理。当然,这是我个人脑补的,猜测的。
既然物质时空同源,正反粒子碰撞湮灭,就是物质粒子又转化成了时空(可能存在时空粒子)。
我们知道了时空是什么,也就能理解宇宙是什么了,最高层次的存在还是时间和空间。
那宇宙中最高温度是多少度呢?那就是时空破碎时的温度。
怎样破碎时空?可能是宇宙奇点大爆炸,可能是超新星爆发,可能是黑洞爆炸。
至于温度的下限,有说是绝对零度的,可那个依旧局限在物质分子,原子,中子,质子,电子层面。
绝对零度是物质的最低温度,并不是宇宙的最低温度。
宇就是空间,宙就是时间。宇宙是时空,最高温度就是宇宙崩塌时的温度,所以多高已经没有意义了,宇宙都崩塌了,我们也就不存在了。
文/杨三
宇宙中最高的温度能达到1.416833x10 32K,也就是构成本宇宙所有物质的爆炸释放能量的极限温度(宇宙大爆炸了极限温度)。宇宙中最低温度一273.15 。目前宇宙中测量到最高的温度,就是超新星爆炸释放的能量使温度达到20亿 (高度文明智慧人类(外星人)测量到了。
没有证据的推测我都视为无效,凭我们人类掌握的知识还不能说明什么,太阳系的东西都还有一堆问题没有说清楚,就越级说宇宙的事了,说了就像是梦话。
我们需要先了解温度的定义。
温度(temperature)是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。
换言之,物体分子运动的越剧烈,温度就越高;越平静,温度就越低。
最低温度:
所以理论上,当物体的分子完全静止的时候,就是温度最低的时候,科学界对这个温度有一个专业名词——绝对零度。
根据计算,“绝对零度”的数值为-273.15 ,在此温度下,物体分子的动能为0,处于完全静止的状态,所以这就是温度的下限,也是一个理论值。
宇宙中不会再有比它更低的温度了,但也永远达不到“绝对零度”,只能无限接近。
2018年5月,NASA的物理学家团队利用Space X猎鹰号火箭将他们的冷原子实验室(CAL)送上了国际空间站。
凭借空间站中零重力的优势,CAL将把一团原子云的温度降至前所未有的低点,甚至只比“绝对零度”高上100亿分之一度而已。
CAL
这也是人类目前制造出来的最低的温度,同时也是迄今为止宇宙中最低的温度。
但这是人为制造的低温,如果要说自然界中的最低温,则是距离地球5000光年外的“布莫让星云”。
“布莫让星云”是位于半人马座方位的行星状星云,距地球5000光年。发现于1979年,因外形酷似蝴蝶领结,或者回力棒,所以又被叫“领结星云”、“回力棒星云”。
该星云温度可达零下272 ,比绝对零度仅高1.15 ,是已知的一个温度低于背景辐射的天体,也是已知的宇宙中最冷的地方。
“布莫让星云”是由从一颗恒星的核心逸流出的气体形成的,气体向外流出的速度是164公里/秒,并且在进入太空之后很快速的膨胀。这种膨胀是造成它温度下降的主要原因(绝热膨胀)。
最高温度:
既然有温度下限,那么自然也有温度上限——普朗克温度。
普朗克温度以德国物理学家马克斯·普朗克命名,大小为1.416833(85) 10^32 开尔文,折合成摄氏度也和这个差不多,都是10的33次方级别,100后面跟着4个亿(100亿亿亿亿摄氏度)。
(注:摄氏度=开尔文温度+273.16)
开尔文温度被认为是宇宙大爆炸第一瞬间的温度,也是温度的基础上限,现代科学认为推测任何东西比这更热是毫无意义的。
当然,同“绝对零度“一样,你只能找出一个温度和”普朗克温度“无限相近的物质,但永远不可能达到。
而我们人类制造出来的最高温度,是2010年11月,由欧洲的科学家利用位于瑞士和法国边境的欧洲大型强子对撞机制造的,意在模拟近140亿年前宇宙形成的瞬间过程。
在这台“巨无霸”机器全长约27公里的环形轨道内部,两束铅离子的亚原子粒子束朝着相反的方向前进,它们每运行一圈,就会获得更多的能量,速度也随之增加。
对撞之际,这些粒子“狂飙”的速度可以达到光速的99.99%,从而使它们在对撞瞬间产生的高温相当于太阳核心温度的100万倍,即10万亿度。
宇宙最低温度 绝对零度 —273.15℃
宇宙最高温度 宇宙大爆炸 宇宙大爆炸那一刻,温度达到无穷大;宇宙大爆炸后10负44次方秒,温度约为1亿亿亿亿度 “宇宙大爆炸”时产生的温度上限——就是最后某一粒子存在的最高温度“Tmax”
绝对零度,即绝对温标的开始,是温度的极限,相当于—273.15℃,当达到这一温 宇宙
度时所有的原子和分子热量运动都将停止.这是一个只能逼近而不能达到的最低温度.人类在1926年得到了0.71K的低温,1933年得到了0.27K的低温,1957年创造了0.00002K的超低温记录.目前,人们甚至已得到了距绝对零度只差三千万分之一度的低温,但仍不可能得到绝对零度. 如果真的有绝对零度,那么能不能检测到呢?有没有一种测量温度的仪器可以测到绝对零度而不会干扰受测的系统(受测的系统如果受到干扰原子就会运动,从而就不是绝对零度了)?确实,绝对零度无法测量是依靠计算得出来的,研究发现温度降低时,分子的活动就会变慢,那么依靠计算得出,当降到绝对零度时,分子是静止的,所以就得出了绝对零度的概念. —270.15℃ 宇宙微波背景辐射 宇宙微波背景辐射是“宇宙大爆炸”所遗留下的布满整个宇宙空间的热辐射,反映的是宇宙年龄在只有38万年时的状况,其值为接近绝对零度的3K. —260℃ 星际尘埃的温度 在寒冷的宇宙空间,星际尘埃的温度可低达—260℃. —250℃ 低温火箭发动机 印度空间研究组织试验成功了一种低温火箭发动机,该发动机的燃料温度为—250℃.在其带动下,发动机冲压涡轮的最高速度达到4万转每分钟,标志着印度空间研究水平跨越了一个具有重要意义的里程碑. —240℃ 冥王星 从冥王星上看太阳,太阳只是一个闪亮的光点,它从太阳上所接受到 冥王星
的光和热,只有地球从太阳得到的几万分之一,因此,冥王星上是一个十分阴冷黑暗世界.最高温度是—210℃,最低温度是—240℃.除冥王星以外海王星也可达到—240℃. 科学家1898年在实验室第一次得到了—240℃的低温,这时,氢气变成了液氢. —230℃ 非金属的磁性 非金属材料在低温下也能表现出磁性,这种磁体适用于制造新型计算机存储设备,绝缘设备等.但这类材料在温度超过一定限度时就会失去磁性.目前,临界温度最高的非金属磁体在—230℃左右,即使施加高压也仅能提高到—208℃. —220℃ 天王星 天王星自转一次的“天王星日”约为17小时14分,因为有快速的自转而 天王星
[1]和木星一样地呈现东西向的明显条纹.因为距离太阳遥远,天王星大气层云上端温度约在—220℃,表面显淡蓝色. —210℃ 鲸鱼座τ的尘埃盘 鲸鱼座τ是除了太阳以外离地球最近的类太阳恒星,距离太阳仅约12光年,亮度约3.5等,以肉眼就可以看到.它周遭有尘埃与彗星组成的尘埃盘,这个尘埃盘的直径比太阳系稍大一些,温度仅—210℃左右,可能是因为小行星和彗星彼此碰撞的碎片所形成. -200℃ 土卫六星 到目前为止,我们尚未发现有任何地外生命存活的迹象.但卡西尼号正在探索的土卫六可能是一个生命起源的实验室. 由于表面温度为—200℃,土卫六不是一个能产生生命的地方,但是它的浓密的大气层中含有许多碳氢化合物.它们通过太阳的紫外光可产生化学反应.光化学反应能产生有机分子,这些碳基化合物是产生生命的第一步.但是土卫六太冷了,以致于无法迈出下一步.它就像是一个深度冻结了的地球.在50亿年后,它将会得到产生生命所需要的热量,因为那时太阳将膨胀成一个熊熊发光的红巨星.只是那时由于太阳已进入生命的暮年,生命大约已经来不及产生了.
-190℃ 低温下出现许多奇怪现象
低温世界就像魔术师,各种物质出现奇妙变化.空气在-190℃时会变成浅蓝色液体,如果把鸡蛋放进去,它会产生浅蓝色的荧光,摔在地上会像皮球一样弹起来;鲜艳的花朵放进去,会变成玻璃一样光闪闪,轻轻的一敲发出“叮当”响,重敲竟破碎了,从鱼缸捞出一条金鱼头朝下放进液体中,金鱼再取出来就变得硬梆梆,晶莹透明,仿佛水晶玻璃制成的“工艺品”,再将这“玻璃金鱼”放回鱼缸的水中,奇怪的是金鱼竟然复活了,又摆动着轻纱一般的尾巴游了起来. -180℃ “梦的纤维”——凯英拉纤维 凯英拉纤维的性能赛过钢铁和合金,被人们称为“梦的纤维”这种液晶纤维的强度是钢的5倍,铝的10倍,玻璃纤维的3倍,能在—180℃左右连续使用.它主要用作飞机的结构材料、子午线轮胎、船体、运动器具、防护服装和缆绳等.例如:美国波音飞机公司的767型客机采用了3吨凯英拉纤维与石墨纤维混杂的复合材料,使机身重量减轻了1吨,与波音727飞机相比,燃料消耗节省30%. -170℃ 生命存活的低温极限 这样的温度已有最简单的微生物能够生存了.观察表明,大肠杆菌、伤寒杆菌和化脓性葡萄球菌均能在—170℃下生存. -160℃ 水星背阳面 离太阳最近的水星,它和太阳的平均距离为5790万公里,是太阳最近的行星.它表面温差最大,因为没有大气的调节,向阳面的温度最高时可达430℃,但背阳面的夜间温度可降至—160℃,昼夜温度差近600℃,这可是一个处于火和冰间的世界.温度变化如此巨大,水星上是不可能有生命的. —150℃ 木星 木星是太阳系中的第五个行星,木星为太阳系最大的行星,其内部可以放入1300个地球,密度较低,其重量仅为地球的317倍.木星的成份绝大部分是氢和氦.木星离太阳较远,表面温度达—150℃;木星内部散放出来的热是它从太阳接受热的两倍以上. —140℃ 液氮低温加工橡胶品 橡胶制品是很难降解的高分子弹性材料,将它粉碎到具有广泛用途的精细胶粉十分困难.目前,国际上利用废轮胎工业化生产精细胶粉的方法主要采用液氮低温冷冻法,即将橡胶在—130℃到—140℃的温度下冷冻成玻璃化状态再加以粉碎,就能轻易获得优良的精细胶粉.
—130℃ 地球最低气温
地球上最低温出现在南极最高峰——文生峰,这里年平均气温-129℃,夏日平均气温-117.7℃.而地球上第一高峰珠穆朗玛峰夏日平均气温也有-45℃,南极地区的冷烈可见一般. —120℃ 月球表面温度最低值 表面温度:-120~+150℃ —110℃ 酒精温度计 温度计中红色的液体是酒精,酒精在—117℃才会凝结.因而在地球上温度最低的南极洲,酒精温度计也能用.当然温度低于—117℃时,酒精温度计也派不上用场了. —100℃ 最冷的压缩机 一个国外电脑玩家使用了超过4个压缩机,自制了一套可以降温到—100℃的压缩机系统,来给CPU处理器降温! —90℃ 地球最低温 在南极的内陆,人们已经测到-88.3℃的低温. —80℃ SARS病毒不怕低温 SARS病毒的一个显著特点是怕热不怕冷,即使是在—80℃它还能至少生存4天,甚至多达21天,而在56℃下SARS病毒的生存时间不超过90分钟. —70℃ 北极最低气温 北极地区年平均气温北极地区年平均气温在—15℃~—20℃之间,比南极年平均气温高25℃,冬季时(1月)极夜期为180天,最低气温在—70℃.低温可预防某些疾病,生活在北极的爱斯基摩人是先靠吃海豹肉和海豹油为主,当地人很少有心脏病、心血管、高血压、关节炎等疾病. —60℃ 火星的温度 在远离地球的火星上,平均温度是—60℃.
—50℃ 我国最冷气温
在我国有过低于-50℃的地区记录不多.中国内蒙古自治区大兴安岭的矣渡河在1922年1月16日曾观测到-50.1℃的温度,是新中国成立前气温记录中的最低值. 新中国成立后,新疆北部的一个气象站在1960年1月20日以-50.7℃的低温首次打破了记录,接着1月21日又以-51.5℃再创全国新记录.中国最北的气象站——黑龙江省漠河气象站1968年12月27日清晨测得了—50.9℃,而在1969年2月13日漠河终于诞生了中国现有气象资料中的极端最低气温记录:—52.3℃. 世界上最不怕冷的花,是出产在中国的雪莲,即使-50℃,也鲜花盛开. —40℃ 我国最冷的一天 大家都知道我国最北的地方是漠河,漠河在中国有气象记录以来最冷日子是1960年1月21日,日平均气温为—43.8℃. —30℃ 国色天香牡丹花 牡丹原产我国,喜温凉高燥,忌炎热低湿环境.较耐寒,可耐零下30℃的低温. 在北京门头沟去的一条山谷中,严冬时节温度最低可达—30℃,山里有水的地方基本上都结成厚冰,但这里却有一只泉眼里的泉水千年不冻,并且水里一年四季都生长着茂盛的水草,因此被当地人称为“千年不冻水”. -20℃ 低温燃料电池组 日本本田公司最近宣布成功地开发出可以在-20℃低温下起动的燃料电池组,体积大幅度减小、功率更大.配备该电池组的汽车得到日本国土交通大臣批准后,已经开始公路行驶试验.
-10℃ 人可以居住生活了
-10℃已是地球上高纬度地区寒冬季节常见的温度了.虽然会感到冰寒透骨,但人已经能够在这样的温度下正常生活了. 0℃ 水的凝固点(熔点) 地球表面的70%是被水覆盖着的,约有14亿千立方米的水量,其中有96.5%是海水,剩下的虽是淡水,但其中一半以上是冰.所以说地球是一个水的星球,正是这样的星球才能孕育出生命,所以“水”是生命之源.有了生命就有生机活力,世界才会更精彩. 既然水能结成冰,水也能变成气体扩散在空气中.当水在0℃时结成冰,就会失去流动性,不再是液体.所以有0℃是“水的冰点”之称. 10℃ 凉爽宜人的赤道城 在南美洲的厄瓜多尔国的首都基多城里,赤道线恰好通过该城.不少人认为通过赤道的城市一定很热.但事实并非如此,这里不论春、夏、秋、冬,一年中月平均气温都在10℃左右,年平均温差只有4℃.是一个四季如春、凉爽宜人的赤道城. 这是因为它位于海拔2800米的高原上.我们知道太阳光是一种短波辐射,当它通过大气时,只有很少部分被大气直接吸收,大部分则照射在地球表面,使地球表面增温.因此愈是靠近地面,由于吸收的热量愈多,温度升得愈高,反之,愈是向高处,吸收的热量愈少温度愈低.所以在高原地带,气候总是比较凉. 20℃ 双孢蘑菇菌丝生长温度 双孢蘑菇菌丝可在5℃~33℃生长,适宜生长温度20℃~25℃,最适宜生长温度22℃~24℃,高温致死温度为34℃~35℃. 30℃ 我是蚊子! 蚊子最喜欢的温度是30℃左右,太高了也受不了.秋天气候变冷温度降到10℃以下时,它们就会停止繁殖,不食不动进入冬眠,直到第二年春天激醒后又出来.
40℃ 人体自身的温度极限
人属于恒温动物,一般说来不会超出35℃~42℃的范围,41℃时人体器官肝、肾、脑将发生功能障碍,连续几天42℃的高烧,足以致使成年人死命. 鸟类和哺乳动物也都属于恒温动物,一般说鸟类的体温较高,在37℃~44.6℃范围内,而哺乳动物的体温较低,哺乳动物一般约在25℃~37℃之间.但总的说来都在40℃上下,与人类的体温差别不很大,这是因为它们跟我们人类都生活在同一个星球上,处在大体相同的环境中的缘故. 此外,经过科学家长期研究和观察对比,认为生活中的理想温度应该是:居室温度保持在20℃~25℃;穿衣保持最佳舒适感时,则皮肤的平均温度为33℃;饭菜的温度为46℃~58℃;饮水时的温度为44℃~59℃;泡茶的温度为70℃~80℃;洗澡水的温度为34℃~39℃;洗脚水的温度为50℃~60℃;冷水浴的温度为19℃~21℃; 50℃~60℃ 沙漠之温 由于沙漠地区的云量少,日照强,又缺乏植被覆盖,空气湿度小,因此白天气温上升极快,大部分时间都在30℃以上,中午最热的时候,温度能上升到50℃以上.在北非曾有高达58℃的记录. 但沙漠的夜间较凉,因为整夜无云,地面辐射强,散热快,夜间最低温度一般在7℃~12℃之间,也有出现薄霜的日子. 70℃ 味道感觉 生理和心理学家的研究表明,人们食用食品时所获得的多种多样的味道感觉,实质上是由于味道和嗅觉协同作用的结果. 一些可以热喝的饮料,如咖啡,其温度在70℃时才味美可口,热牛奶和热菜的温度在70℃左右最为好喝.有些油炸类食品,比如油炸大虾,温度应保持在70℃左右,虽然吃起来还有些烫,但这时的味道最美. 80℃ 温泉微生物 许多微生物一般都依靠光合作用而生存,这些依靠光合作用的微生物一般在72℃以下才能生存.然而在1967年,印第安纳大学的布洛克博士发现,在他放在一个叫做“蘑菇塘”80℃泉水中的载玻片上,附着一层微生物细胞.这是首次发现生活在72℃以上的生物.这种嗜热微生物属于细菌类,布洛克博士将它命名为“水生嗜热菌黄石一类”. 90℃ 海底火山口微生物 1979年,科学家造访了太平洋的深处的一个海底火山口,这里温度常年在保持90℃,也是阳光不能到达的地方.但科学家惊奇地发现这里到处是生命——多毛虫、虾、蟹和其它生物.那些从来没有见过日光的微生物处在食物链的最底端,多毛虫没有口,没有胃或者其它的消化器官,周围水域的化学物质渗透进体内后,细菌就把它们转为多毛虫能够利用的食物.
100℃ 水的沸点
上面我们了解了水的冰点,那么水的沸点是100℃在一个大气压下,当我们的水开时,它的温度是100℃而且只能保持100℃.但是人们在海拔8000多米的珠穆朗玛峰上煮鸡蛋时开水最高只有80℃,那是因为在8000多米高的地方气压低了,所以水的沸点只有也降低了. 火锅浓汤的温度可高达120℃,最容易烫伤口腔粘膜.所以常常有人吃了火锅后会发生口腔溃烂甚至牙齿发炎肿胀.火锅里的海鲜类食品更应引起重视. 200℃ 地下热岩发电 相对的,受到压强越大,水的沸点也会相应变高.英国从1987年开始进行岩浆发电实验.在英国一个温度最高的热岩地带,其在6000米深处的热岩可以把水在高压状态下加热到200℃,然后将200℃水的热能再转为电能. 300℃ 变质岩 地壳中的岩石,由于地壳活动或岩浆活动的影响,受到高温、高压的作用和岩浆的化学作用,使原来岩石的内部矿物成分、结构和构造上发生了变化,从而形成一种新的岩石,称为变质岩,这种变化称为变质作用.这一变质过程所要求的温度和压力分别为300℃和100兆帕. 400℃ 城市的污泥处理 在城市中,有工厂的地方污泥比较多,有些河流受污染后也沉积了大量的污泥.科学家为了解决这个污染问题,通过研究发现了污泥中含有可燃物质.加拿大则为此专门建立了一个实验工厂,进行污泥转化为新型燃料的研究工作.他们通过机械方法先将污泥中的大部分水和无用泥沙去掉,再将污泥烘干,然后将干泥放进一个450℃的蒸馏器中,在与氧隔绝的条件下进行蒸馏,就可产生可燃物质.
500℃ 聚光式太阳灶
这种太阳灶是利用抛物面形的反射镜聚光获得较高温度,直径一般为1—2米.由于能量集中,因而热效率较高,可获得500℃的高温.这种聚光式太阳灶在我国农村的一些家庭中,用来做饭、炒菜、煮饲料、烧水. 600℃ 高效燃料电池 日本产业技术综合研究所与名古屋大学的联合研究小组开发出工作温度为600℃、平均每平方厘米发电量0.8瓦、比现有同类电池发电量高出1倍以上的固体电解质型燃料电池. 700℃ 烟头、蚊香的温度 烟头的表面温度虽然只有250℃~300℃,烟头的中心温度一般在700℃~800℃左右,蚊香的燃烧温度也达700℃. 800℃ 火山熔岩 在火山爆发时,总会喷出大量红色的火山熔岩.刚喷出时一般是液体状态,通常温度在800℃—1200℃左右,火山熔岩在流淌的过程中,不断向大气和大地表面散热,产生大量的烟雾.所以火山熔岩在冷却时凝固都是由外向里进行的. 900℃ 矿石的熔化 矿石是较轻的、更活泼的金属物质,它不能被碳在可行的高温下还原出来,因为它们的原子在矿石中结合得更为紧密.这些金属通常是通过电解得到,或通过使它们的化合物与更活泼的金属发生反应而获得,例如,氧化铅和在950℃下电解水晶石(铝和钠的双氧化物)和氟化钙的混合物中的溶化的氧化铅.
1000℃(1千摄氏度) 钻石的形成
常言道:“钻石是女士的最佳良伴”.有趣的是;钻石原来只是纯碳,而碳是仅次于氢、氦和氧的宇宙间第四种最常见的化学元素.因此,钻石的罕有并不源自其化学元素成分,而是在于它形成的方法和地点.地球上的钻石相信是在100至300公里深;温度接近1000℃的地底形成,其后因火山爆发而带至地面.单以化学成分来看,钻石和用来制造铅笔芯的石墨,其实是近亲.如果你把钻石放入高温火炉;那么最终只会化为普通的石墨. 2000℃(2千摄氏度) “刚玉” 1924年,德国人鲁夫用纯氧化铝粉末成型,在2000℃左右的高温炉中烧结,得到了世界上第一块纯氧化铝制品,但一直到1993年才由西门子公司正式命名,中国人取其白如玉而坚硬不凡,将定译名为“刚玉”. 3000℃(3千摄氏度) 玻璃碳 玻璃碳是一种类似玻璃的碳,它兼有玻璃及碳素材料的双重性能.这种物质如果在真空或非氧化性气氛下的工作温度可达3000℃,而且耐热震性能好,可以作为熔炼高纯物质的坩埚,半导体外延炉感应加热板等,在科学上应用很广泛.
4000℃(4千摄氏度) 太阳黑子
大家都知道太阳黑子,太阳黑子出现比较多的情况下,会产生地磁暴给人们工作带来很多不方便.例如:航海的船舶迷失方向,通信信号连接不上.那么太阳黑子其实并不黑,它们中心的温度在4000℃以上.亮度仍可与上下弦时半个月亮的光相比.只不过在明亮的光球反衬下就显得很黑. 5000℃(5千摄氏度) 日珥 日珥主要突出日两边缘的一种太阳活动现象.它们比太阳圆面暗弱得多,在一般情况下被日晕淹没,不能直接看到,只有在日全食时通过望远镜才能看到.日珥的温度在5000—8000℃之间,一般可以扩散到几十万公里、形状千奇百怪.有的日珥能长期存在.奇怪的是日珥和日冕的温度、密度相差800倍,何以能长期共存,科学家们正在研究. 6000℃(6千摄氏度) 太阳表面 太阳的表面温度达到6000℃.太阳大气中有90多种化学元素,其氢的含量最多,约占太阳质量的71%,氦约占27%,其他元素约占2%,包括钠、钙、铁、氧等.正因为这些化学元素每天都在制造核暴炸,放出大量的光和热,给我们生活带来生机.但太阳的能量是有限的,终有一天能量用完后,太阳也就消失了. 一个质量为月球质量的1/1000的微型黑洞,温度约为6000℃,与太阳表面温度相当. 7000℃(7千摄氏度) 地热能 地热能是由地壳抽取的天然热能、这种能量来自地球内部的熔岩,并以热力形式存在,是引致火山爆发及地震的能量.地球内部的温度高达7000℃. 8000℃(8千摄氏度) 牛郎星 在中国古代传说当中的牛郎星,在夜里我们观看到时它像一块宝石一样闪闪发亮.其实它的表面温度比太阳表面还要高2000℃,也就是8000℃. 9000℃(9千摄氏度) 水稻的积温 积温是某一时段内逐日平均气温之和.我国云南西南部、广东、福建、海南和台湾等省全年积温都是在8000℃以上,而最南端的海南乐东县莺歌海至三亚沿海一带、西沙永兴岛的全年积温更达9000℃,热量资源极为丰富,适宜水稻等喜温作物生长.这些地区的水稻生长普遍两季乃至三季. 10000℃(1万摄氏度) 织女星 在夜里我们能观看到和牛郎星相伴的织女星,其温度有10000℃. 100000℃(十万摄氏度) 星云 在星际当中物质分布是不均匀的,有的地方云气体和尘埃比较密集,形成各种各样的云雾天体.这些云雾状的天体就叫星云.环状星云是一颗很有名的行星状星云,它的中心星是一个接近演化终点的白矮星,温度有100000℃,密度也非常高.
1000000℃(百万摄氏度) 日冕
太阳日冕的温度高达100万℃. 俄罗斯科学院圣彼堡技术物理大学成功地研制出一种温度计,可以快速测量热核反应堆中等离子体温度.科研人员在该温度计中使用了特殊结构的激光光源,从而在瞬间就能测量出温度高达1000000℃的等离子体的温度. 10000000℃ (千万摄氏度) 中子星表面 质量和太阳相当的中子星,表面温度约为1000万℃. 核聚变的发生必须具备1千万摄氏度以上甚至几亿摄氏度的高温. 100000000℃(1亿摄氏度) 人类创造的最高温度 人类所能产生的最高温是510000000℃约比太阳的中心热30倍,该温度是美国新泽西的普林斯顿等离子物理实验室中的托卡马克核聚变反应堆利用氘和氚的等离子混合体于1994年5月27日创造出来的. 1000000000℃(10亿摄氏度)及以上 宇宙大爆炸 宇宙大爆炸那一刻,温度达到无穷大;宇宙大爆炸后10负44次方秒,温度约为1亿亿亿亿度;宇宙大爆炸后10负36次方秒,宇宙温度继续下降,当时的温度约为10000亿亿亿度;宇宙大爆炸后10负32次方秒,温度约为1亿亿亿度;宇宙大爆炸10负12次方秒后,温度达到1亿亿度;宇宙大爆炸后10负6次方秒,温度达到10000亿度;宇宙大爆炸后10负4次方秒,温度达到1000亿度,这也是超新星爆发时其星核的温度;宇宙大爆炸后1秒,温度降低到约为100亿度;在大爆炸后的大约3秒,温度降到了10亿度,这也是最热的恒星内部的温度. “宇宙大爆炸”时产生的温度上限——就是最后某一粒子存在的最高温度“Tmax”,也知道了宇宙的温度范围——就是从“绝对零度”到“最后某一粒子存在的最高温度‘Tmax’”.
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-mail:langhai8@163.com
本文链接:https://www.wumai.net/tianqi/20221218133007.html