CO2地质储存项目的监测是通过制定和执行具体的监测方案来实现的。(三)确定监测的地理范围监测范围应集中在CO2羽状体的地理范围,并适当关注项目覆盖区。在这里有一点需要注意,随着CO2的持续注入,CO2羽状体以及项目覆盖区的范围也会随之逐渐扩大,因此监测方案中需要作出明确规定,储存项目的监测范围需要随着项目的进展以及羽状体/项目覆盖区范围的扩大而扩大。另外,监测结果与模拟结果的一致性也是影响监测频率的重要因素。表10-12 各环境要素在不同监测阶段的监测频率参照表一般来说,所有的监测活动都需要从项目初期开始,并一直贯穿储存
CO2地质储存项目的监测是通过制定和执行具体的监测方案来实现的。与监测手段一样,监测方案迄今也没有一个通用的制定方法或标准,需要针对不同项目的实际情况分别制定。监测方案包括很多内容,一般主要包括监测参数和手段、布点原则与基本要求、监测地理范围、监测背景值、监测频率等。
(一)确定监测参数和手段
可用的CO2地质储存监测手段非常多,即使是对于其中一项监测参数,往往也有多种监测手段可选,有时这也会造成项目运营者在选择监测手段时的迷惑。因此,本书在这里列出几项实施成本低、但能提供大量关键信息,而且对不同的项目具有较好通用性的监测手段,以帮助项目运营者进行选择。不过还需要强调,这仅是一般性的参考建议,还需依据项目的实际情况给出最佳选择。
1)井密封性监测:成像测井/垂直地震剖面图;
2)确定最大允许注入压力:注水压裂试验;
3)注入流量/状态/组分监测:流量计/压力传感器/温度传感器/化学成分检测/注入剖面绘图(项目初期和后期可能需要);
4)储层中的压力、温度监测:井下压力传感器/热电偶;
5)盖层地应力监测:微震监测/三轴张力仪;
6)羽状体和项目覆盖区分布:垂直地震剖面监测/时移地震监测(三维和四维)/倾斜仪/合成孔径雷达;
7)地下水/地表水/土壤气/地表大气抽样监测。
(二)监测布点原则与监测基本要求
1.土壤监测点布点原则与基本要求
由于CO2需要在高于临界压力(7.38MPa)的注人压力下注入储层,注入期间在注入井附近CO2将主要受注入压力的驱动向四周扩散运移,随着时间和运移距离的推移CO2的迁移主要受深部地层结构和状况影响。综合考虑以上因素,将监测点布点区域分为以注入井为中心的灌注中心区和灌注区外延区,中心区和外延区的划分主要依据灌注区储盖层孔隙度、渗透率等,以及数值模拟运移结果。在中心区内采用网格化布点方法,每个网格内布设一个监测点,根据实际工程情况选取合适的网格间距。同时在灌注井和监测井周围加密布点,监测点要深入到地面以下20~30cm的位置。对于灌注外延区主要遵循以下布点原则:①人口居住区,村庄、工厂等;②断裂、断层位置;③地层倾斜方向;④地面沉降或者塌陷地带等;⑤数值模拟深部CO2运移方向。
土壤监测点设置应遵循以下要求:①监测点具有较好的代表性,能够客观反映一定时空范围内土壤呼吸变化规律;②监测点确定后使用GPS定位,同时对地理位置进行简要描述;③监测点的设置要保证测量时间、位置和测试环境上的可重复性,使监测点获得的数据具有可比性。
2.浅层水监测点布点原则与基本要求
在水质监测的有效范围内,重点关注的布点位置原则为;①居民饮用水,居民自用井、机井;②河流、湖泊、泉等;③地层断裂和断层位置附近;④灌注井、监测井、废弃井等;⑤区域地下水系统地下水补给、径流方向,CO2在储集层分布和扩散状况;⑥以地下水为主要供水水源的地区。
浅层水监测点设置应遵循以下要求:①监测点具有较好的代表性,能够客观反映一定时空间范围内的水质变化情况和规律;②监测点的设置尽可能保证测量时间和位置上的可重复性,使监测点获得的数据具有可比性;③监测点网不要轻易变动,尽量保持单井地下水监测的连续性;④监测重点为以饮用为目的的含水层。
3.大气监测点布点原则与基本要求
在大气监测的有效范围内,重点关注的布点位置原则为:①人口居住区,村庄、工厂等;②断裂、断层位置(地面可见和不可见位置);③地势低洼地带;④主导风向比较明显的情况下,应将下风向作为主要监测范围,布设较多的采样点,上风向布设少量点作为对照;⑤地面沉降或者地面塌陷地带;⑥数值模拟运移路径区域;⑦废弃井、油井等位置;⑧灌注井、监测井位置。
大气监测点设置应遵循以下要求:①监测点具有较好的代表性,能够客观反映一定时空范围内的环境空气污染水平和变化规律;②监测点的设置尽可能保证测量时间和位置上的可重复性,使监测点获得的数据具有可比性;③监测点的设置应尽量避免车辆尾气或其他污染源直接对监测结果产生的干扰;④采样点的周围应开阔,采样口水平线与周围建筑物高度的夹角应不大于30。;⑤考虑到CO2的物理性质以及环境安全影响,监测和采样离地面的高度为25~150cm,重点监测25~80cm;⑥布点综合运用同心圆布点法与扇形布点法。
4.管线监测监测点布点原则与基本要求
由于管道的老化、管道断裂、腐蚀、、磨损、疲劳质量、缺陷等原因,一旦发生泄漏事故,除了影响正常的生产外,还会导致环境影响,危及管线过境地区人民生命财产安全。因此,管道沿线监测点布点原则为:①根据管线年份、类型、材料,尺寸及现状等情况,确定监测点设置;②监测点宜布置在管线的节点、转角点和变形曲率较大的部位,监测点平面间距宜为15~25m,并宜延伸至基坑以外20m;③直接监测点应设置在管线上,也可以利用阀门开关、抽气孔以及检查井等管线设备作为监测点;④人口居住区,村庄、工厂等。
管道沿线测点设置应遵循以下要求:①监测点具有较好的代表性;②监测点的设置尽可能保证测量时间和位置上的可重复性,使监测点获得的数据具有可比性;③监测点的设置应尽量避免车辆尾气或其他污染源直接对监测结果产生的干扰;④考虑到CO2的物理性质以及环境安全影响,监测和采样离地面的高度为0.25cm~1.5m。
(三)确定监测的地理范围
监测范围应集中在CO2羽状体的地理范围,并适当关注项目覆盖区。在这里有一点需要注意,随着CO2的持续注入,CO2羽状体以及项目覆盖区的范围也会随之逐渐扩大,因此监测方案中需要作出明确规定,储存项目的监测范围需要随着项目的进展以及羽状体/项目覆盖区范围的扩大而扩大。例如,美国华盛顿州在颁布的法规中对监测区域做了如下定义:“监测区域的边界是CO2地质储存项目的边界,该边界为以下两个边界的较大者:注入活动结束100年后包含注入的95%质量CO2的几何边界;或CO2羽状体边缘扩张速度小于1%的边界。”
(四)确定监测的背景值
在正式注入CO2之前,需要对重要参数进行监测,并以此作为注入后测量数据比较的基准线。在这里有一点需要注意,在确定背景值时,需要充分考虑有些参数自然波动的因素(比如大气/地表土壤/地表水中的CO2浓度随季节的变化).这可能需要花费数月甚至数年时间。
(五)监测频率
各种监测手段的监测频率也是需要考虑的一个问题。有些非常关键的监测手段可能需要实施得频繁一些(如井的密封性监测、盖层/储层应力监测、地下水抽样监测等),而一些次关键的监测手段(如羽状体分布监测、储层温度监测等)的实施频率可以小一些。由于CO2地质储存项目的风险一般随时间呈现出先增后减的趋势,与此相对应,各种监测手段的实施频率也应当根据项目风险的变化而进行相应调整。另外,监测结果与模拟结果的一致性也是影响监测频率的重要因素。随着项目的进行,如果监测得到的结果与模型模拟的结果总是能够很好地吻合,则说明模型能够很好地反映实际情况,对应的监测频率就可以相应降低;而如果监测结果与模型模拟结果出现严重偏差,则说明要么是模型不准确,要么是储层中出现一些意外情况,因此需要加大监测频率,以确保安全。
CO2地质储存对各环境要素的影响监测,其频率可参照表10-12。
表10-12 各环境要素在不同监测阶段的监测频率参照表
一般来说,所有的监测活动都需要从项目初期(CO2注入前)开始,并一直贯穿储存项目的全程。在封井完成之后,由于仍存在一定的泄漏风险,仍然需要进行监测。不过,由于封井后CO2泄漏的风险会随时间推移逐渐减小,因此需要进行的监测工作也会相应减少,这时就可以逐渐将某些监测活动停止,仅保留若干对项目安全性评估最关键的监测手段(如羽状体分布监测、井筒密封性监测、地下水抽样监测等),以降低监测成本。
这是我做的一个模板,可以给你参考一下。
环境空气质量现状监测方案
根据《环境影响评价技术导则大气环境》(HJ2.2-2008)中环境空气质量现状调查原则,本项目的评价等级为二级,评价范围为半径5km的圆。因此在项目评价范围内布设了6个环境空气质量现状监测点,监测点分别设在明星村、向前村、外海地税局、麻原派出所、白水带风景区、汇源新苑。空气质量监测点位位置图详见图1。
于5月16日—5月22日对评价范围测点进行连续7天的监测。
1、监测项目及监测频率
本项目的大气环境现状监测项目为NO2、SO2、PM10、TSP。
监测频率为一期。NO2、SO2连续监测7天,每天4次,分别于02:00、08:00、14:00和20:00进行监测,PM10、TSP每天连续采样12小时,测得各监测因子的日平均浓度。
(2)采样及分析方法
NO2和SO2使用装有吸收液的多孔坡板吸收管(NO2项目在进气口接有氧化管),用大气采样器在现场采样,送回化验室分析,一般当日完成。标准曲线在监测前绘制,采用721或722型分光光度计测定吸收度。整个分析过程按《空气和废气监测分析方法》规定进行。PM10和TSP用自动采样器采样后,送化验室分析。
分析方法采用国家环保局编制的《空气和废气监测分析方法》(第四版)、《环境监测技术规范(1986)》等规定的方法。各项目具体选定的分析方法和最低检出限如表1所示。
表1 大气监测项目分析方法
项目 分析方法 最低检出限值 单位
NO2 盐酸萘乙二胺分光光度法 0.015 mg/m3
SO2 甲醛吸收-副玫瑰苯胺分光光度法 0.007 mg/m3
PM10 重量法 0.001 mg/m3
TSP 重量法 0.001 mg/m3
室内质量最主要检测的是氨、氡、甲醛、苯及苯系物、总挥发性有机化合物等等。
空气质量检测应安排在装饰、装修彻底完工至少7天以后进行。7天之内正是挥发各种污染物浓度最高的时候,7天之后基本能降低到稳定状态,这时才是检测的最佳阶段。对外门窗关闭时间越长,室内污染物浓度越高。氡的检测应在对外门窗关闭24小时以后进行,其他4项污染物都规定在充分通风后,关闭对外门窗1小时后进行。这是考虑了污染物的积累过程和人体正常工作生活的实际规定的。另外,采用集中空调的建筑工程应在空调正常运转的情况下取样检测。
请专业空气检测中心对室内空气做整体质量检测,三个工作日后便可收到检测报告,再根据检测数据采取相应解决办法。在选择检测单位时一定要选具有CMA资质的单位,因为经国家认证的检测机构才有权威性。
空气质量的流程是
1.电话咨询确定检测方案、检测费用并商定检测时间。
2.根据双方商定的检测时间,三个工作日内专家携带仪器上门检测取样并收费检测费。
3.经检测中心实验室分析后,自检测之日起三个工作日内分析出检测结果。
4.自检测之日起一周内寄出检测报告。
5.对室内空气污染严重者提供治理意见和建议。
6.单位检测需监测部门派专家到现场确定检测方案,同时签订委托检测合同。
原生钛检测中心提示:在进行空气质量检测时,选择正规的专业的检测单位很重要。一要看是否具备相关检测本领、先进的检测设备以及专业的检测团队;二看是否具有CMA资质认证;三是检测人员是否经过专业培训,服务质量是否合格等。
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-mail:langhai8@163.com
本文链接:https://www.wumai.net/wumai/20221213003505.html