当前位置:首页 > 天气预报 > 正文

智能温度传感器(智能温度传感器有哪些)

1概述TMPl01是TI公司生产的基于I2C串行总线接口的低功耗、高精度智能温度传感器,其内部集成有温度传感器、A/D转换器、I2C串行总线接口等。TMP101首先通过内部温度传感器产生一个与被测温度成正比的电压信号,再通过12位△-∑型A/D转换器将电压信号转换为与摄氏温度成正比的数字量并存储在内部的温度寄存器中。该器件根据用户在温度上下限寄存器中设定的THIGH和TLOW,通过温度窗口比较器决定是否启动报警输出。后4个寄存器均属于数据寄存器。

基于12C总线接口的智能温度传感器TMPl01

智能温度传感器(智能温度传感器有哪些)

1概述TMPl01是TI公司生产的基于I2C串行总线接口的低功耗、高精度智能温度传感器,其内部集成有温度传感器、A/D转换器、I2C串行总线接口等。宽泛的温度测量范围和较高的分辨率使其广泛应用于多领域的温度测量系统、多路温度测控系统以及各种恒温控制装置。TMPl01具有以下性能特点:

1)带有I2C总线,通过串行接口(SDA,SCI)实现与单片机的通信,其I2C总线上可挂接3个TMPl01器件,构成多点温度测控系统。

2)温度测量范围为-55%~125℃,9~12位A/D转换精度,12位A/D转换的分辨率达0.0625~C。被测温度值以符号扩展的16位数字量方式串行输出。

3)电源电压范围宽(+2.7V~+5.5V),静态电流小(待机状态下仅为O.1μA)。

4)内部具有可编程的温度上、下限寄存器及报警(中断)输出功能,内部的故障排队功能可防止因噪声干扰引起的误触发,从而提高温控系统的可靠性。2TMPl01引脚功能和内部结构2.1TMPl01引脚功能TMPl01硬件连接简便,运行时除了SDA、SCI.和ALERT线上需要加上拉电阻外不需外接器件.TMPl01采用SOT23-6封装,引脚排列如图1所示,引脚功能如下:SCL:串行时钟输入端;GND:接地端;ALERT:总线报警(中断)输出端,漏极开路输出;V+:电源端;ADD0:I2C总线的地址选择端;SDA:串行数据输入/输出端。电源与接地端之间接有一只0.1μF的耦合电容。2.2TMPl01内部结构TMP101内部结构框图如图2所示,TMP101内部含有二极管温度传感器、△-∑型A/D转换器、时钟振荡器、控制逻辑、配置寄存器、温度寄存器以及故障排队计数器。TMP101首先通过内部温度传感器产生一个与被测温度成正比的电压信号,再通过12位△-∑型A/D转换器将电压信号转换为与摄氏温度成正比的数字量并存储在内部的温度寄存器中。该器件根据用户在温度上下限寄存器中设定的THIGH和TLOW,通过温度窗口比较器决定是否启动报警输出。系统上电后器件处于缺省状态,其温度报警缺省阈值为:上限温度THIGH=80℃温度TLOW=75℃。3TMP101工作原理TMPl01的I2C总线串行数据接口线SDA和串行时钟接口线SDA由主控制器控制.主控制器作为主机,TMP101作为从机并支持12C总线协议的读/写操作命令。首先通过主控制器对其进行地址设定。使主控制器对挂接在总线上的TMP1O1进行地址识别。为了能够正确获取TMP101内部温度寄存器中的温度值数据,要通过I2C总线对TMP101内部相关寄存器写相应的数据,设定温度转换结果的分辨率、转换时间、报警输出的上、下限温度值以及工作方式等.也就是对TMPl01内部的配置寄存器、上限温度寄存器和下限温度寄存器进行初始化设置。3.1TMP1O1的地址设置根据12C串行总线规范,TMP1O1有一个7位的从器件地址码,其有效位为"10010",其余两位根据引脚ADD0接地、悬空和接电源端的不同分别设置为"00"、"01"、"10"。一条I2C总线上可挂接3个TMPl01器件。3.2TMP101内部寄存器TMP101的功能实现和工作方式主要是由内部5个寄存器确定,如图3所示,这些寄存器分别是地址指针寄存器、温度寄存器、配置寄存器、上限温度(TL)寄存器和下限温度(TH)寄存器。后4个寄存器均属于数据寄存器。地址指针寄存器为8位可读/写寄存器,内部存储了要读写的其余4个数据寄存器的地址,在读写操作中。通过设定地址指针寄存器的内容确定要访问的寄存器。在8位数据字节中,前6位全部设置为0,后2位用于选择寄存器,后2位P0、P1的值与选择的寄存器关系如表l所列。温度寄存器为16位可读寄存器,温度寄存器存储经A/D转换后的12位温度数据,后4位全补为O,以构成2字节的可读寄存器。也可以通过设置配置寄存器的内容来获得9、10、ll、12位不同的转换结果。配置寄存器为8位可读/写寄存器,数据格式如表2所列。通过配置寄存器设置器件的工作方式。Rl/R0为温度传感器转换分辨率配置位,可以设定内部.A/D转换器的分辨率及转换时间:F1/F0为故障排队次数配置位,当被测温度连续超过n次(通过设置Fl/F0位),就会有报警输出;POL为ALERT极性位,通过POL的设置,可以使控制器和ALERT输出的极性一致:SD用来设置器件是否工作在关断模式:在关断模式下,向OS/ALERT位写l可以开启一次温度转换,在温度比较模式下,该数据位可提供比较模式的状态。4与PICl8F458单片机的接口TMP101以高精度的测量结果和超小型贴片封装广泛应用于各种温度测量系统、电源管理系统、温度监控装置以及恒温控制装置中,通过其串行数据接口线SDA和串行时钟接口线SCL可方便地与微控制器相连接,构成一个温度测量系统。图4所示为PIC18F458单片机与TMP101的连接应用电路。4.1PICl8F458简介PICl8F458是美国Microchip公司生产的单片机。片内集成了A/D转换器、EEPROM存储器、比较输出、捕捉输入、PWM输出、I2C和SPI接口、异步串行通信(USART)接口电路、CAN总线接口电路、Flash程序存储器等,功能强大,设计电路简单可靠。4.2TMP101初始化设置要获取TMP101中的温度值数据,首先应通过PICl8F458单片机对TMP101内部的配置寄存器、上限温度寄存器和下限温度寄存器进行初始化设置。其过程为:PICl8F458单片机对TMP101写地址,然后写配置寄存器地址到指针寄存器,最后写入数据到配置寄存器。PICl8F458单片机对TMP101配置寄存器写操作的时序如图5所示,上、下限温度寄存器的写时序和配置寄存器的写时序同理。4.3TMP101读数据读取TMP101内部温度寄存器当前值的过程是:首先写入要读的TMP101,然后写入要读的TMP101内部温度寄存器,向I2C总线上发送一个"重启动信号",并将TMP101地址字节也重发一次,改变数据的传输方向,从而再进行读取温度寄存器的操作。单片机对TMPl01温度寄存器读操作的时序如图6所示。图6可以解释为:在串行数据线SDA和串行时钟线SCL的时序配合下,将PICl8F458单片机的启动使能位SEN置位建立启动信号时序,紧接着单片机将要读的TMP101地址字节写入缓冲器,并通过单片机内部移位寄存器将字节移送至SDA引脚,8位地址字节的前7位是TMP101的受控地址,后l位为读/写控制位(为"O"时表示写操作)。写地址字节完成后,在第9个时钟脉冲周期内,单片机释放SDA,以便TMP101在地址匹配后,能够反馈一个有效应答信号供单片机检测接收。第9个时钟脉冲之后,SCL引脚保持为低电平,SDA引脚电平保持不变,直到下一个数据字节被送入缓冲器为止。然后再写入要读的TMP101内部温度寄存器地址字节,其过程与TMPl01地址字节的写操作同理。通过向总线上发送"重启动信号",改变数据的传输方向,此时寻址字节也要重发一次,但对TMP101的地址字节已变为读操作,再读取TMP101内部温度寄存器的地址字节,最后读出TMP101内部温度寄存器中的温度值数据字节,被测温度值以符号扩展的16位数字量方式串行输出。单片机每接收一个字节都要反馈一个应答信号,此时要注意单片机反馈的应答信号和TMP101反馈的应答信号是不同的,最后通过设置停止使能位,发送一个停止信号时序到总线上,表明此次通信终止。5结束语介绍了基于I2C串行总线接口的数字智能温度传感器TMP101的性能、结构和工作原理,以及与PICl8F458单片机的实际应用,并成功地运用到"基于单片机的智能教室控制系统"中,该系统能显示教室内实际检测到的温度值,并通过RS-485通讯数据线传输到上位机进行实时显示,测量结果精度高,系统运行稳定。

什么是温度传感器?

温度传感器监测材料或物体在温度变化时发生的变化。温度传感器可以检测与温度变化相对应的物理量变化。物理量可以是电阻或电压之类的任何东西。基于电能到热能的传感器使用通过导体的电流的热效应。基于热能到电能的传感器将需要温差才能运行。

温度传感可以有两种类型:接触式和非接触式。在基于接触的温度传感中,传感器将与被传感的物体物理接触。在非接触式温度传感中,传感器解释热源的辐射能。辐射能是在电磁光谱的红外部分发射的能量形式。可以使用非接触技术监测非反射性固体和液体。

浴霸智能开关温度传感器坏了怎么办

浴霸智能开关温度传感器坏了,可以修理或者是换一个新的温度传感器。

浴霸是通过特制的防水红外线热波管和换气扇巧妙组合在一起的浴用小家电产品。浴霸将浴室的取暖、红外线理疗、浴室换气、装饰等多种功能结合于一体,它是许多家庭沐浴时首选的取暖设备。一般市场上销售的浴霸可以分为下4种:灯泡系列浴霸、PTC(一种陶瓷电热元件)系列风暖浴霸、双暖流系列浴霸和远红外热波浴霸。但是,平常家用的浴霸都是普通的灯泡系列浴霸。

智能家居温度传感器需要留电位吗

不需要。智能家居温度传感器不需要供电,只要保持周围空气干燥但是同时保持不要潮湿以防传感器准确。

温度传感器原理及应用

温度传感器原理及应用

温度传感器原理及应用,温度传感器的应用非常广泛,它具有一定的转换能量的作用,在各行各业其实都能看到温度传感器的身影,下面为大家分享温度传感器原理及应用。

温度传感器原理及应用1

温度传感器工作原理:

作为传感器无非是把某种形式的能量转换成另一种形式的能量。对于转换形式来说有两类:有源的和无源的。有源传感器能将一种能量形式直接转变成另一种,不需要外接的能源或激励源。无源传感器不能直接转换能量形式,但它能控制从另一输入端输入的能量或激励能,传感器承担将某个对象或过程的特定特性转换成数量的工作。

其“对象”可以是固体、液体或气体,而它们的状态可以是静态的,也可以是动态(即过程)的。 对象特性被转换量化后可以通过多种方式检测。对象的特性可以是物理性质的,也可以是化学性质的。按照其工作原理,它将对象特性或状态参数转换成可测定的电学量,然后将此电信号分离出来,送入传感器系统加以评测或标示,这样传感器的工作就结束了。

温度传感器应用:

在科技发展日新月异的今天,电子温度传感器由于其对于安全保障的重要作用,已经被广泛应用于如生物制药、无菌室、洁净厂房、电信、银行、图书馆、档案馆、文物馆、智能楼宇等各行各业需要温度监测的场所和领域。而最为广泛的边是计算机机房,下面就以计算机机房为例讲解电子温度传感器在机房中的`应用

担当信息处理与交换重任的机房是整个信息网络工程的数据传输中心、数据处理中心和数据交换中心。为保证机房设备正常运行及工作人员有一个良好的工作环境,对机房温湿度的监测是必不可少的,合理正常的温湿度环境是机房设备正常运行的重要保障。

随着计算机技术的不断发展和计算机系统的广泛使用,机房环境必须满足计算机设备对温度、湿度等技术要求。

机房的温度和湿度作为计算机设备正常运行的必要条件,我们必须在机房的合理位置安装温度传感器,以实现对温度、湿度进行24小时实时监测,并能在中控室的监测主机上实时显示各个位置的温度测量值。

温度传感器原理及应用2

进气温度传感器坏了怎么检测

1、检测电阻: 如果进气温度传感器本身或其线路故障,将导致发动机启动困难、怠速不稳、废气污染物排放量增加,进气温度传感器的电阻检测方法及要求与冷却液温度传感器基本相同。

单件检查时,将点火开关置于OFF位置,拆下进气温度传感器导线连接器,并将传感器拆下。

用电热吹风、或热水加热进气温度传感器,并用万用表电阻档,测量在不同温度下两端子间的电阻值。

将测得的电阻值与标准数值进行比较,如果与标准值不符,则应更换进气温度传感器。安装进气温度传感器,用10Nm左右的力矩拧紧传感器。检查结构与水温传感器相似的进气温度传感器时,可采用检查水温传感器的方法。

在正常情况下,温度为20度C时,阻值约为2-3千欧姆;80度C时,阻值约为O。4-0.7千欧姆。如果测量结果不符合规定要求,则应更换传感器,安装于空气流量传感器内的进气温度传感器损坏时,应更换空气流量传感器。

2、检测电压:

(1)检测电源电压:拆下进气温度传感器线束插头,打开点火开关,测量进气温度传感器的电源电压,应为5V。

(2)测量输入:信号电压。将点火开关置于ON位置,用万用表的电压挡测量图中ECU的THA与E2间的电压,该电压值应在0.5~3.4V(20度C)范围内。若不在规定范围内,则应进一步检查进气温度传感器连接线路是否接触不良或存在断路、短路故障。

(3)检查进气温度传感器连接线束电阻。用数字式万用表的电阻挡测量传感器插头与ECU插接器端子间电阻,即传感器信号端、地线端分别与对应的ECU的两端子电阻。如果不导通或电阻值大于1Ω,说明传感器连接线路或插头接触不良,应进一步检查。

温度传感器原理及应用3

红外温度传感器原理

红外温度传感器,在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0.75~100μm的红外线,红外温度传感器就是利用这一原理制作而成的。

温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。

红外线:

红外线是一种人眼看不见的光线,但事实上它和其它任何光线一样,也是一种客观存在的物质。任何物体只要它的温度高于热力学零度,就会有红外线向周围辐射。红外线是位于可见光中红色光以外的光线,故称红外线。它的波长范围大致在0.75~100μm的频谱范围之内。

红外辐射:

红外辐射的物理本质是热辐射。物体的温度越高,辐射出来的红外线越多,红外辐射的能量就越强。研究发现,太阳光谱的各种单色光的热效应从紫色光到红色光是逐渐增大的,而且zui大的热效应出现在红外辐射的频率范围之内,因此人们又将红外辐射称为热辐射或者热射线。

传感原理:

热传感器是利用辐射热效应,使探测器件接收辐射能后引起温度升高,进而使传感器中一栏与温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过赛贝克效应来探测辐射的,当器件接收辐射后,引起一非电量的物理变化,也可通过适当变化变为电量后进行测量。

红外温度传感器应用

非接触式温度测量

红外辐射探测

移动物体温度测量

连续温度控制

热预警系统

气温控制

医疗器械

长距离测量

红外温度传感器在智能空调上的应用

舒适的生活环境是我们大家共同追求的,随着电子技术的发展,科技已经改变了我们周围的生活,科技化智能化的家居生活将成为可能。空调作为重要的家电产品,其创新发展技术也在不断进步,新型的智能空调运用多种传感器技术以及新型科技技术,实现了空调健康舒适、节能环保的智能化目标。

红外温度传感器在智能空调上的应用

传统的空调出风量和出风的位置是固定不变的,人们在房间的时候,空调的出风大小是不会改变的,这样只能固定的出风,不仅满足不了人们的需求,而且浪费电量,新型的智能传感器安装了利用红外传感器设计的动感仪,红外温度传感器感应人体活动量,按需分配风量。

让不同的人各有舒适,空调上的动感仪可以对室内空间进行5区域的划分,并实时监控5个区域,并在140度的大范围实时监测和敏锐感知人体活动量并进行分区差异化按需送风,以此适应不同家庭成员的个性化使用需求,进而提高空调房间的整体舒适性。

智能空调的动感仪由三组不同角度的红外温度感应器构成,每组动感仪有2个感应头,共有6个感应头对出风口进行智能调节风量及风向,自动识别人体位置和活动量,不断更新采集数据,智能分析数据,根据不同的人体活动量进行差异化送风,让不同活动量的人都感觉舒适,并且减少了达到人感所需温度的时间。