温度传感器的四种类型及原理1 1、接触式温度传感器 接触式温度传感器的检测元件与被测对象之间可以良好的接触。
温度传感器的四种类型及原理
温度传感器的四种类型及原理,传感器也慢慢的在发展与完善,它具有一定的转换能量的作用,在各行各业我们其实都能看到传感器的身影,那么下面为大家分享温度传感器的四种类型及原理。
温度传感器的四种类型及原理1
1、接触式温度传感器
接触式温度传感器的检测元件与被测对象之间可以良好的接触。它通过传导或者对流使之达到热平衡状态,从而使温度计的显示数值能直接表示被测对象的温度。
2、非接触式温度传感器
非接触式温度传感器的敏感元件与被测对象互不接触,这种传感器一般用于测量运动物体、小目标和热容量小或温度变化迅速的对象的表面温度,也可用于测量温度场的温度分布。
3、热电阻温度传感器
热电阻温度传感器是利用导体或者半导体的电阻值随其温度变化而变化的原理进行测温的一种传感器。对于不同导体(半导体)来说,温度每变化一度,电阻值变化是不同的,而电阻值又可以直接作为输出信号。
4、热电偶传感器
热电偶是由两种不同成份的导体接合而成的回路,当接合点的温度不同时,在回路中就会产生热电动势,这种现象叫做热电效应,这种电动势叫热电势。其中,直接用作测量介质温度的一端叫做测量端,另一端叫做补偿端;
补偿端与显示仪表连接,显示仪表会指出热电偶所产生的热电动势。不同材质制作出的热电偶使用于不同的温度范围,它们的灵敏度也不相同。制作热电偶的金属材料必须具有很好的延展性,所以热电偶测温元件具有极快的响应速度,可以测量温度快速变化的过程
温度传感器的四种类型及原理2
1、热电偶的工作原理
当有两种不同的导体和半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T,称为工作端或热端,另一端温度为 TO,称为 自由端(也称参考端)或冷端,则回路中就有电流产生,如图 2-1(a)所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞 贝克效应。
与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连 接处时,此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二, 当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于 温度梯度的方向),称为汤姆逊效应。
两种不同导体或半导体的组合称为热电偶。热电偶的热电势 EAB(T,T0)是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质 及在接触点的温度有关。
温差电势是指同一导体或半导体在温度不同的两端产生 的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集 中于接触处端点的电子数不同而产生的电势,热电偶测量的热电势是二者的合成。
当回路断开时,在断开处 a,b 之间便有一电动势差△V,其极性和大小与回路中的热电势一致,如图 2-1(b)所示。并规定在冷端,当电流由 A 流向 B 时,称 A 为正极,B 为负极。实验表明,当△V 很小时,△V 与△T 成正比关系。定义△V 对△T 的微分热电势为热电势率,又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。
目前,国际电工委员会(IEC)推荐了 8 种类型的热电偶作为标准化热电偶,即为 T 型、E 型、J 型、K 型、N 型、B 型、R 型和 S 型。
2、热电阻的工作原理
导体的电阻值随温度变化而改变,通过测量其阻值推算出被测物体的`温度,利用此原理构成的传感器就是电阻温度传感器,这种传感器主要用于-200—500℃温度范围内的温度测量。
纯金属是热电阻的主要制造材料,热电阻的材料应具有以下特性:①电阻温度系数要大而且稳定,电阻值与温度之间应具有良好的线性关系。②电阻率高,热容量小,反应速度快。③材料的复现性和工艺性好,价格低。④在测温范围内化学物理特性稳定。目前,在工业中应用最广的铂和铜,并已制作成标准测温热电阻。
3、红外温度传感器
在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于 0、75~100μm 的红外线,红外温度传感器就是利用这一原理制作而成的。
SMTIR9901/02 是荷兰 Smartec Company 生产的一款现在市场上应用比较广的红外传感器,它是基于热电堆的硅基红外传感器。大量的热电偶堆集在底层的硅基上,底层上的高温接点和低温接点通过一层极薄的薄膜隔离它们的热量,高温接点上面的黑色吸收层将入射的放射线转化为热能,由热电效应可知,输出电压与放射线是成比例的, 通常热电堆是使用 BiSb 和 NiCr 作为热电偶。此外,
SMT9902sil 内部嵌入以 Ni1000 温度传感器和一小视角的硅滤片,使得测量温度更加的准确。因为红外辐射特性与温度相关,可以使用不同的滤镜来测量不同的温度范围。成熟的半导体工艺是产品小型化,低成本化。为了满足某些应用,红外传感器开口视角可以设计成小至 7°。
4、模拟温度传感器
常见的模拟温度传感器有 LM3911、LM335、LM45、AD22103 电压输出型、AD590 电流输出型。
AD590 是美国模拟器件公司的电流输出型温度传感器,供电电压范围为 3~30V, 输出电流 223μA(-50℃)~423μA(+150℃),灵敏度为 1μA/℃。当在电路中串接采样电阻 R 时,R 两端的电压可作为输出电压。
注意 R 的阻值不能取得太大, 以保证AD590 两端电压不低于 3V。AD590 输出电流信号传输距离可达到 1km 以上。作为一种高阻电流源,最高可达 20MΩ,所以它不必考虑选择开关或 CMOS 多路转换器所引入的附加电阻造成的误差。适用于多点温度测量和远距离温度测量的控制。
5、逻辑输出型温度传感器
设定一个温度范围,一旦温度超出所规定的范围,则发出报警信号,启动或关闭风扇、空调、加热器或其它控制设备,此时可选用逻辑输出式温度传感器。LM56、MAX6501-MAX6504、MAX6509/6510 是其典型代表。
LM56 是 NS 公司生产的高精度低压温度开关,内置 1、25V 参考电压输出端。最大只能带 50μA 的负载。电源电压从 2、7~10V,工作电流最大 230μA,内置传感器的灵敏度为 6、2mV/℃,传感器输出电压为 6、2mV/℃×T+395mV。
6、数字式温度传感器
它采用硅工艺生产的数字式温度传感器,其采用 PTAT 结构,这种半导体结构具有精确的,与温度相关的良好输出特性。PTAT 的输出通过占空比比较器调制成数字信号,占空比与温度的关系如下式:DC=0、32+0、0047*t,t 为摄氏度。
输出数字信号故与微处理器 MCU 兼容,通过处理器的高频采样可算出输出电压方波信号的占空比,即可得到温度。该款温度传感器因其特殊工艺,分辨率优于 0、005K。测量温度范围-45 到 130℃,故广泛被用于高精度场合。
温度传感器的四种类型及原理3
一、温度传感器有哪几种
温度传感器是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。
(一)按测量方式可分为接触式和非接触式两大类。
1、接触式
接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。
温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差。
常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等,广泛应用于工业、农业、商业等部门。
2、非接触式
它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。
最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法、辐射法和比色法。
非接触测温优点:测量上限不受感温元件耐温程度的限制,因而对最高可测温度原则上没有限制。对于1800℃以上的高温,主要采用非接触测温方法。随着红外技术的发展,辐射测温逐渐由可见光向红外线扩展,700℃以下直至常温都已采用,且分辨率很高。
(二)按照传感器材料及电子元件特性分为热电阻和热电偶两类。
1、热电阻
热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。
温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。
热敏电阻还有其自身的测量技巧。热敏电阻体积小是优点,它能很快稳定,不会造成热负载。不过也因此很不结实,大电流会造成自热。由于热敏电阻是一种电阻性器件,任何电流源都会在其上因功率而造成发热。功率等于电流平方与电阻的积。因此要使用小的电流源。如果热敏电阻暴露在高热中,将导致永久性的损坏。
2、热电偶
热电偶是温度测量中最常用的温度传感器。其主要好处是宽温度范围和适应各种大气环境,而且结实、价低,无需供电,也是最便宜的。电偶是最简单和最通用的温度传感器,但热电偶并不适合高精度的的测量和应用。
二、各种温度传感器工作原理
1、热电偶传感器工作原理
当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端或冷端,则回路中就有电流产生,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。
与塞贝克有关的效应有两个,其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向)。称为珀尔帖效应。其二,当有电流流过存在温度梯度的导体时。导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应,两种不同导体或半导体的组合称为热电偶。
2、电阻传感器工作原理
导体的电阻值随温度变化而改变,通过测量其阻值推算出被测物体的温度,利用此原理构成的传感器就是电阻温度传感器,这种传感器主要用于-200—500℃温度范围内的温度测量。纯金属是热电阻的主要制造材料,热电阻的材料应具有以下特性:
(1)、电阻温度系数要大而且稳定,电阻值与温度之间应具有良好的线性关系。
(2)、电阻率高,热容量小,反应速度快。
(3)、材料的复现性和工艺性好,价格低。
(4)、在测温范围内化学物理特性稳定。
目前,在工业中应用最广的铂和铜,并已制作成标准测温热电阻。
3、红外温度传感器原理
在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0、75~100μm的红外线,红外温度传感器就是利用这一原理制作而成的。
红外热堆传感温度传感器与普通温度传感器有什么不同?
红外温度传感器与温度传感器都是常用的测温仪器,可以对物体进行直接的温度测量。
红外线温度传感器
利用红外线的物理性质来进行测量的传感器。红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。任何物质,只要它本身具有一定的温度(高于绝对零度),都能辐射红外线。红外线温度传感器测量时不与被测物体直接接触,因而不存在摩擦,并且有灵敏度高,反应快等优点。
温度传感器
一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。
红外温度传感器的独特之处:
红外温度传感器,又称非接触式温度传感器主要是利用被测物体热辐射而发出红外线,从而测量物体的温度,可进行遥测。
优点是:
1、由于和被测量介质不直接发生接触,所以不用考虑被接触介质的一些自身物理特性
例如:粘附、腐蚀、磨损等等都不会对传感器造成损害。而接触式的就要面临这些问题的额外解决。
2、受空间局限性较小。对于一些距离较远不易接触到的被测量目标可以远距离测量温度。
3、对于一些不方便接触测量的目标可以实现测量,例如旋转机械、运动中的目标等等
非接触式测量温度就有所偏差,例如,一杯热茶,用非接触式,测量,其中子啊测量的时候,有一定距离,这段距离有空气流过,也有复杂的气体掺杂,,然而探头是要经过这些空气达到被测物体的温度,所以,有微量的差异,但通过校正之后测量误差会降低。
4、测量速度快,理论上0.1秒就可以测出被测物体的温度
半导体温度传感器的工作原理
半导体温度传感器的工作原理,生活中我们很多的电子设备都是需要用到传感器的,传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,以下分享半导体温度传感器的工作原理。
半导体温度传感器的工作原理1
半导体温度传感器工作原理:
1、热电偶温度传感器工作原理
两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。
当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。
2、红外温度传感器工作原理
在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0.75~100μm 的红外线,红外温度传感器就是利用这一原理制作而成的。
SMTIR9901/02是一款现在市场上应用比较广的红外传感器,它是基于热电堆的硅基红外传感器。大量的热电偶堆集在底层的硅基上,底层上的高温接点和低温接点通过一层极薄的薄膜隔离它们的热量
高温接点上面的黑色吸收层将入射的放射线转化为热能,由热电效应可知,输出电压与放射线是成比例的,通常热电堆是使用BiSb和NiCr作为热电偶。
3、模拟温度传感器工作原理
AD590是一款电流输出型温度传感器,供电电压范围为3~30V,输出电流223μA~423μA,灵敏度为1μA/℃。当在电路中串接采样电阻R时,R两端的'电压可作为输出电压。R的阻值不能取得太大,以保证AD590两端电压不低于3V。
AD590输出电流信号传输距离可达到1km以上。作为一种高阻电流源,最高可达20MΩ,所以它不必考虑选择开关或CMOS多路转换器所引入的附加电阻造成的误差。适用于多点温度测量和远距离温度测量的控制。
4、数字式温度传感器工作原理
它采用硅工艺生产的数字式温度传感器,其采用PTAT结构,这种半导体结构具有精确的,与温度相关的良好输出特性。PTAT的输出通过占空比比较器调制成数字信号,占空比与温度的关系如下式:DC=0.32+0.0047*t,t为摄氏度。
输出数字信号故与微处理器MCU兼容,通过处理器的高频采样可算出输出电压方波信号的占空比,即可得到温度。该款温度传感器因其特殊工艺,分辨率优于0.005K。测量温度范围-45到130℃,故广泛被用于高精度场合。
半导体温度传感器的工作原理2
一、热电阻温度传感器:
测温原理:热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。目前主要有金属热电阻和半导体热敏电阻两类。
金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即:Rt=Rt0[1+α(t-t0)] 式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。
半导体热敏电阻的阻值和温度关系为:Rt =AeB/t式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。
测温范围:金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠。半导体热敏电阻测温范围只有-50~300℃左右, 且互换性较差,非线性严重,但温度系数更大,常温下的电阻值更高(通常在数千欧以上)。
二、集成温度传感器:
集成温度传感器有可分为模拟式温度传感器和数字式温度传感器。
1.模拟式温度传感器
测温原理:将驱动电路、信号处理电路以及必要的逻辑控制电路集成在单片IC上,具有实际尺寸小、使用方便、灵敏度高、线性度好、响应速度快等 优点。
测温范围:LM135235335系列是美国国家半导体公司(NS)生产的一种高精度易校正的集成温度传感器,是电压输出型温度传感器,工作特性类似于齐纳稳压管。
该系列器件灵敏度为10mV/K,具有小于1Ω的动态阻抗,工作电流范围从400μA到5mA,精度为1℃,LM135的温度范围为-55℃~+150℃,LM235的温度范围为-40℃~+125℃,LM335为-40℃~+100℃。
封装形式有TO-46、TO-92、SO-8。该器件广泛应用于温度测量、温差测量以及温度补偿系统中。
2.数字式温度传感器
测温原理:将敏感元件、A/D转换单元、存储器等集成在一个芯片上,直接输出反应被测温度的数字信号,使用方便,但响应速度较慢(100ms数量级)。
测温范围:DS18B20是美国Dallas半导体公司生产的世界上第一片支持“一线总线” 接口的数字式温度传感器,供电电压范围为3~5.5V,测温范围为-55℃~+125℃
可编程的9~12位分辨率,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,出厂设置默认为12位,在12位分辨率时最多在750ms内把温度值转换为数字。
三、热电偶温度传感器
测温原理:两种不同成分的导体(称为热电偶丝或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电动势。
热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表连接,显示出热电偶所产生的热电动势,通过查询热电偶分度表,即可得到被测介质温度。
测温范围:常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。
半导体温度传感器的工作原理3
测温传感器有哪些
热敏电阻传感器:是负温度系数热敏电阻的缩写。它是一种特殊类型的电阻器,其电阻会根据温度而变化。热敏电阻的输出由于其指数性质而呈非线性;但它可以根据其应用进行线性化。热敏电阻传感器有效操作范围为-50至250 °下进行玻璃封装热敏电阻或150 °下标准热敏电阻。
测温传感器有哪些
电阻温度探测器:电阻温度检测器是测量非常精确的传感器之一。在电阻温度检测器中,电阻与温度成正比。该传感器由铂、镍和铜金属制成。它具有广泛的温度测量功能,可用于测量-270oC至+850oC范围内的温度。
RTD需要外部电流源才能正常工作。要使用RTD测量温度,必须将其连接在惠斯通电桥和恒流源中。测量电压输出以确定电阻。然后,可以通过给定RTD的线性电阻-温度关系推导出温度。
热电偶传感器是非常常见的接触型温度传感器。它们结构紧凑、价格低廉、使用简单,并能快速响应温度变化。
其由一个传感元件组成,该元件可以是玻璃或环氧树脂涂层,并且有2根电线,因此它们可以连接到电路。它们通过测量电流电阻的变化来测量温度。热敏电阻有NTC或PTC两种形式,通常成本较低。
半导体传感器:半导体传感器是以IC形式出现的设备。通常,这些传感器被称为IC温度传感器。电流输出温度传感器、电阻器输出温度传感器、电阻器输出硅温传感器、二极管温度传感器、数字输出温度传感器。
目前的半导体温度传感器在大约55°C至+150°C的工作范围内提供高线性度和高精度。
红外传感器是一种电子仪器,红外传感器是一种非接触式温度传感器。它们是光敏设备,可检测来自周围区域或物体的红外(IR)辐射以测量热量。这些传感器分为热红外传感器和量子红外传感器两类。
文章主要介绍了测温传感器有哪些,浏览全文可以了解到有多种类型的温度传感器适用于测量温度的应用,并提供不同的功能或规格。例如,温度传感器可以提供模拟或数字输出。
推荐两款工业级红外温度传感器供你参考:首先是一款德国HLP公司产的红外温度传感器 - TS318-1B0814,TS318-1B0814热电堆红外温度传感器主要用在非接触式测量,功能是将物体发出的热辐射转化为电压输出。特点是大信号、NTC参考传感器、TO-5封装。主要应用在电器、医疗设备、自动设备、消费类产品以及诸多工业应用。
最后是一款英国Calex Electronics Ltd产的PyroBus PyroCAN - PyroCouple PyroEpsilon,PyroCouple是一款简洁的红外温度传感器,可选配模拟输出。无复杂设置,只需连接到温度指示器和电源,即可马上开始测量。温度测量范围:-20°C ~ 500°C,适用于在大多数非反射的非金属表面上进行非接触式的温度测量,如纸张、厚塑料、沥青,油漆表面,食品,橡胶和有机材料等等。测量温度的模拟输出的选择:双线4-20 mA,四线0-50 mV,四线K型J型或T热电偶型。在四线型产品上增加传感器体温输出:指示传感器周围的空气温度,有助于防止过热或过冷。
红外温度传感器原理及应用
红外温度传感器原理及应用,传感器的应用非常广泛,它具有一定的转换能量的作用,在各行各业我们其实都能看到传感器的身影,那么下面为大家分享红外温度传感器原理及应用。
红外温度传感器原理及应用1
红外温度传感器,在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0.75~100μm的红外线,红外温度传感器就是利用这一原理制作而成的。
温度是度量物体冷热程度的一个物理量,是工业生产中很普遍、很重要的一个热工参数,许多生产工艺过程均要求对温度进行监视和控制,特别是在化工、食品等行业生产过程中,温度的测量和控制直接影响到产品的质量和性能。
红外线:
红外线是一种人眼看不见的光线,但事实上它和其它任何光线一样,也是一种客观存在的物质。任何物体只要它的温度高于热力学零度,就会有红外线向周围辐射。红外线是位于可见光中红色光以外的光线,故称红外线。它的波长范围大致在0.75~100μm的频谱范围之内。
红外辐射:
红外辐射的物理本质是热辐射。物体的温度越高,辐射出来的红外线越多,红外辐射的能量就越强。研究发现,太阳光谱的各种单色光的热效应从紫色光到红色光是逐渐增大的,而且zui大的热效应出现在红外辐射的频率范围之内,因此人们又将红外辐射称为热辐射或者热射线。
传感原理:
热传感器是利用辐射热效应,使探测器件接收辐射能后引起温度升高,进而使传感器中一栏与温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过赛贝克效应来探测辐射的,当器件接收辐射后,引起一非电量的物理变化,也可通过适当变化变为电量后进行测量。
红外温度传感器应用
非接触式温度测量
红外辐射探测
移动物体温度测量
连续温度控制
热预警系统
气温控制
医疗器械
长距离测量
红外温度传感器在智能空调上的应用
舒适的生活环境是我们大家共同追求的,随着电子技术的发展,科技已经改变了我们周围的生活,科技化智能化的家居生活将成为可能。空调作为重要的家电产品,其创新发展技术也在不断进步,新型的智能空调运用多种传感器技术以及新型科技技术,实现了空调健康舒适、节能环保的智能化目标。
红外温度传感器在智能空调上的应用
传统的`空调出风量和出风的位置是固定不变的,人们在房间的时候,空调的出风大小是不会改变的,这样只能固定的出风,不仅满足不了人们的需求,而且浪费电量,新型的智能传感器安装了利用红外传感器设计的动感仪,红外温度传感器感应人体活动量,按需分配风量。
让不同的人各有舒适,空调上的动感仪可以对室内空间进行5区域的划分,并实时监控5个区域,并在140度的大范围实时监测和敏锐感知人体活动量并进行分区差异化按需送风,以此适应不同家庭成员的个性化使用需求,进而提高空调房间的整体舒适性。
智能空调的动感仪由三组不同角度的红外温度感应器构成,每组动感仪有2个感应头,共有6个感应头对出风口进行智能调节风量及风向,自动识别人体位置和活动量,不断更新采集数据,智能分析数据,根据不同的人体活动量进行差异化送风,让不同活动量的人都感觉舒适,并且减少了达到人感所需温度的时间。
红外温度传感器原理及应用2
1、红外线温度计的原理
红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。在光学系统视场内的目标红外辐射能量被汇集,视场的大小根据测温仪的光学零件及其位置确定。
红外能量在光电探测器上聚焦而且转变为相应的电信号。这个信号会经过放大器和信号处理电路,而且按照仪器内疗的算法和目标发射率校正后转变成被测量目标的温度值。另外还要考虑到目标和测温仪所处的环境条件,如温度、污染、污染和干扰等因素对性能指标的影响以及修正方法。
① 1800年人类发现红外线辐射,第二次大战之后,应用红外线与表面温度的关系制成温度计的研究和商品,大量涌现
②红外线温度计,根据物体所发射出来的红外线测温;
红外线温度计测温时不发射红外线
③所有物体在绝对温度(-273℃)以上皆会发射红外线
④每种物体之红外线辐射率ε(emissivity)皆不同,使用红外线温度计量测温度时必须设定辐射率,藉以换算成正确温度值
⑤ 红外线温度计可藉由吸收计算红外线量,通过望远镜远端遥测温度,一般商业化机型,可遥测数百公尺外之电线接头温度
2、红外线温度计应用范例
①防疫
快速筛检群众中温度异常者;快速筛检动物、家畜中温度异常者;这一点在今年的疫情中已经有所表现。
②农牧/农产
冷冻食品的保存温度量测;腐烂发酵食品或水果的检出;家畜宠物健康温度管理
③建筑
确认墙壁、门窗的隔热效果;确认冷气、空调空气循环是否均匀;查验断路器、电线、插座是否超载
④侦探
确认短时间内,是否有人用过:电器、电话、电脑、汽机车。
⑤汽机车安全检查
快速检查轮胎温度是否异常,以便进行充气或洩压。
检查不工作的火星塞,熄火的汽缸还有燃料喷头的温度。
诊断车辆冷却系统并且找到冷煤洩漏点。
检测电气接点或者保险丝是否有异常。
3、红外线额温枪优缺点
红外线温度计量测时易受到外在光线及辐射干扰,譬如说以耳温枪当作额温枪使用时,因为有其他外在之光源及辐射干扰,会造成精密度下降之现象
红外线额温枪优点:
①快速测温:免除更换保护套,操作迅速
②免接触,避免了被测者不适,免除感染机会
③免除耗材成本,不需要加套保护套测温,无耗材
④可快速筛检群体中温度异常之个人,再用耳温枪确认其真实体温,节约测量耗时,节省成本
红外线额温枪的缺点:
①易受到外在光线及辐射干扰
②体外温度易受环境温度影响,跟体内实际温度有所差距,(例如:位于冷藏室工作之人员,其额温一定偏低)
③化妆品及肤色,因为红外线辐射率不同,会影响显示温度精度
最后分享一下哪些物质是适合红外线温度计测量的以及哪些是不适合用红外线温度计进行测量的。
①下列物质有较高的发射率,且很适合红外的温度计测量:
衣物、塑胶、玻璃、陶器、皮肤、水及水溶液、牛奶、树木、植物、土壤
②下列物质有较低的发射率特性,不适合红外温度计测量:
黄金、铝、任何发光物体
③具有镜面反光效果之材质不易以红外线方式量测,(例如:不锈钢、铝合金…等)
解决方法:量测会反光之物件,可在物体表面以不反光之黑色漆喷涂
红外温度传感器原理及应用3
红外测温的原理是什么
通过红外热成像技术以及人脸识别技术叠加,实现温感摄像头系统结合了人脸识别和热成像体温检测功能采集相关信息,实现身份信息与体温匹配。同时自动排除干扰人体测温的因素,只针对人脸额部测温,做到人脸和温度即时可见。
红外测温仪是一种非接触式测温仪表,该仪表通过接收测量被测物辐射的红外光线来确定被 测物的温度,具有精度高、响应速度快、操作方便、使用寿命长等特点。非常适用与于运动物 体和热电偶无法测量的场所测温。 红外测温仪由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成。
光学系统汇聚其视场内的目标红外辐射能量,视场的大小由测温仪的光学零件及其位置确定。红外能量聚焦在光电探测器上并转变为相应的电信号。该信号经过放大器和信号处理电路,并按照仪器内疗的算法和目标发射率校正后转变为被测目标的温度值。
红外辐射测温仪的标定:
红外测温仪必须经过标定才能使它正确地显示出被测目标的温度。如果所用的测温仪在使用中出现测温超差,则需退回厂家或维修中心重新标定。
红外辐射测温仪信号处理功能:
测量离散过程(如零件生产)和连续过程不同,要求红外测温仪有信号处理功能(如峰值保持、谷值保持、平均值)。如测温传送带上的玻璃时,就要用峰值保持,其温度的输出信号传送至控制器内。
所用的传感器是红外测温传感器,是一种利用红外线来测量温度的设备。
在这种温度测量技术中红外温度传感器的选择是非常重要的,而且不仅在点温度测量中要使用红外温度传感器,大面积温度测量也可使用红外温度传感器。使用红外测温传感器测量温度似乎很简单。对准、按动按钮、读出温度数值。然而,如果不掌握测量原理和方法,测出的温度结果则会出现很大偏差。
扩展资料:
红外温度传感器按照测量原理可以分为两类:光电红外温度传感器和热电红外温 度传感器。本红外测温仪选用热电红外温度传感器.热电红外温度传感器是利用红外辐射的热效应,通过温差电效应、热释电效应和热敏电阻等来测量所吸收的红外辐射,间接地测量辐射红外光物体的温度。
热量通常由热传导、对流、热辐射三种方式来进行传递。热辐射本质上是一定波长的电磁波,波长范围在0.7~1000微米。实际使用红外温度计测量热辐射波长范围在0.7~14微米,大多数物体在这个范围内辐射最强。
参考资料来源:
百度百科-红外测温传感器
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-mail:langhai8@163.com
本文链接:https://www.wumai.net/tianqi/20221218001512.html